1. Ramo, J. S. and T. V. Duzer, Fields and Waves in Communication Electronics, 3rd Ed., John Wiley & Sons, Inc., 1994.
2. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., IEEE Press Series on Electromagnetic Wave Theory, IEEE Press, 2001.
3. Caloz, C. and T. Itho, Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications, IEEE Press, Hoboken, New Jersey, 2006.
4. Jaulent, M., "The inverse scattering problem for lcrg transmission lines," J. Math. Phys., Vol. 23, No. 12, 2286-2290, 1982.
doi:10.1063/1.525307 Google Scholar
5. Zhang, Q., M. Sorine, and M. Admane, "Inverse scattering for soft fault diagnosis in electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, 141-148, Jan. 2011.
doi:10.1109/TAP.2010.2090462 Google Scholar
6. Tang, H. and Q. Zhang, "An inverse scattering approach to soft fault diagnosis in lossy electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, 3730-3737, Oct. 2011. Google Scholar
7. Bruckstein, A. M. and T. Kailath, "Inverse scattering for discrete transmissionline models," SIAM Review, Vol. 29, No. 3, 359-389, 1987.
doi:10.1137/1029075 Google Scholar
8. Frolik, J. and A. Yagle, "Forward and inverse scattering for discrete layered lossy and absorbing media," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 44, 710-722, Sep. 1997.
doi:10.1109/82.624998 Google Scholar
9. Case, K. M. and M. Kac, "A discrete version of the inverse scattering problem," J. Math. Phys., Vol. 14, No. 5, 594-603, 1973.
doi:10.1063/1.1666364 Google Scholar
10. Berryman, J. G. and R. R. Greene, "Discrete inverse methods for elastic waves in layered media," Geophysics, Vol. 45, No. 2, 213-233, 1980.
doi:10.1190/1.1441078 Google Scholar
11. Godin, Y. A. and B. Vainberg, "A simple method for solving the inverse scattering problem for the difference helmholtz equation," Inverse Problems, Vol. 24, No. 2, 025007, 2008.
doi:10.1088/0266-5611/24/2/025007 Google Scholar
12. Noda, S., "Wave propagation and reflection on the ladder-type circuit," Electrical Engineering in Japan, Vol. 130, No. 3, 9-18, 2000.
doi:10.1002/(SICI)1520-6416(200002)130:3<9::AID-EEJ2>3.0.CO;2-S Google Scholar
13. Ucak, C. and K. Yegin, "Understanding the behaviour of infinite ladder circuits," European Journal of Physics, Vol. 29, No. 6, 1201, 2008.
doi:10.1088/0143-0807/29/6/009 Google Scholar
14. Parthasarathy, P. R. and S. Feldman, "On an inverse problem in cauer networks," Inverse Problems, Vol. 16, No. 1, 49, 2000.
doi:10.1088/0266-5611/16/1/305 Google Scholar
15. Dana, S. and D. Patranabis, "Single shunt fault diagnosis in ladder structures 22 Shlivinski with a new series of numbers," Circuits, Devices and Systems, IEE Proceedings G, Vol. 138, 38-44, Feb. 1991.
doi:10.1049/ip-g-2.1991.0008 Google Scholar
16. Doshi, K., "Discrete inverse scattering," University of California, Santa Barbara, 2008. Google Scholar
17. Desoer, C. A. and E. S. Kuh, Basic Circuit Theory, McGraw-Hill, 1969.
18. Jirari, A., Second-order Sturm-Liouville Difference Equations and Orthogonal Polynomials, Memoirs of the American Mathematical Society, American Mathematical Society, 1995.
19. Felsen, L. B. and N. Marcuvitz, "Radiation and Scattering of Waves," IEEE Press Series on Electromagnetic Waves, The Institute of Electrical and Electronics Engineers, New York, 1994. Google Scholar
20. Elaydi, S. N., An Introduction to Difference Equations, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.
21. Langenberg, K. J., "Linear scalar inverse scattering," Scattering: Scattering and Inverse Scattering in Pure and Applied Science, 121-141, Academic Press, London, 2002. Google Scholar
22. Tsihrintzis, G. and A. Devaney, "Higher-order (nonlinear) diffraction tomography: Reconstruction algorithms and computer simulation," Processing of IEEE Transactions on Image, Vol. 9, 1572, Sep. 2000. Google Scholar
23. Tsihrintzis, G. and A. Devaney, "Higher order (nonlinear) di®raction tomography: Inversion of the Rytov series," IEEE Transactions on Information Theory, Vol. 46, 1748-1761, Aug. 2000.
doi:10.1109/18.857788 Google Scholar
24. Marks, D. L., "A family of approximations spanning the Born and Rytov scattering series," Opt. Express, Vol. 14, 8848, Sep. 2006.
doi:10.1364/OE.14.008837 Google Scholar
25. Markel, V. A., J. A. O'Sullivan, and J. C. Schotland, "Inverse problem in optical diffusion tomography. IV. Nonlinear inversion formulas," J. Opt. Soc. Am. A, Vol. 20, 903-912, May 2003.
doi:10.1364/JOSAA.20.000903 Google Scholar
26. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd Edition, Prentice-Hall Signal Processing Series, Prentice Hall, 1999.
27. Devaney, A. J., "A filtered backpropagation algorithm for diffraction tomography," Ultrasonic Imaging, Vol. 4, No. 4, 336-350, 1982.
doi:10.1016/0161-7346(82)90017-7 Google Scholar