1. Ver Hoeye, S., L. Zurdo, and A. Suarez, "New nonlinear design tools for self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 8, 337-339, 2001.
doi:10.1109/7260.941782 Google Scholar
2. Ver Hoeye, S., F. Ramirez, and A. Suarez, "Nonlinear optimization tools for the design of high-efficiency microwave oscillators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 5, 189-191, 2004.
doi:10.1109/LMWC.2004.827869 Google Scholar
3. Herran, L. F., S. Ver Hoeye, and F. Las Heras, "Nonlinear optimization tools for the design of microwave high-conversion gain harmonic self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 1, 16-18, 2006.
doi:10.1109/LMWC.2005.861357 Google Scholar
4. G. S., O. A. Golovanov, M. Pardavi-Horvath, "Mathematical modeling of nonlinear waves and oscillations in gyromagnetic structures by bifurcation theory methods," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1503-1510, 2006.
doi:10.1163/156939306779274363 Google Scholar
5. Fernandez, M., S. Ver Hoeye, L. F. Herran, and F. Las Heras, "Nonlinear optimization of wide-band harmonic self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 347-349, 2008.
doi:10.1109/LMWC.2008.922128 Google Scholar
6. Fernandez, M., S. Ver Hoeye, L. F. Herran, C. Vazquez, and F. Las Heras, "Design of high-gain wide-band harmonic self oscillating mixers," Proceedings of Workshop on Integrated Nonlinear and Millimetre-Wave Circuits (INMMIC), Vol. 1, No. 1, 57-60, 2008.
doi:10.1109/INMMIC.2008.4745714 Google Scholar
7. Fernandez, M., S. Ver Hoeye, C. Vazquez, G. Hotopan, R. Camblor, and F. Las Heras, "Optimization of the synchronization bandwidth of rationally synchronized oscillators based on bifurcation control," Progress In Electromagnetics Research, Vol. 119, 299-313, 2011.
doi:10.2528/PIER11062007 Google Scholar
8. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative gm cell for improvement of linearity and noise figure," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010. Google Scholar
9. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808 Google Scholar
10. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly efficient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602 Google Scholar
11. Guo, B. and G. Wen, "Periodic time-varying noise in currentconmutating CMOS mixers," Progress In Electromagnetics Research, Vol. 117, 283-298, 2011. Google Scholar
12. 283, C., H. Seo, and B. Kim, "A noise optimized passive mixer for charge-domain sampling applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1909-1917, 2009. Google Scholar
13. Guo, J., Z. Xu, C. Qian, and W. Dou, "Design of a microstrip balanced mixer for satellite communication," Progress In Electromagnetics Research, Vol. 115, 289-301, 2011. Google Scholar
14. Lee, Y.-C., Y.-H. Chang, S.-H. Hung, W.-C. Chien, C.-C. Su, C.-C. Hung, C.-M. Lin, and Y.-H. Wang, "A single-balanced quadruple subharmonical mixer with a compact IF extraction," Progress In Electromagnetics Research Letters, Vol. 24, 159-167, 2011. Google Scholar
15. Lee, Y.-C., C.-M. Lin, S.-H. Hung, C.-C. Su, and Y.-H. Wang, "A broadband doubly balanced monolithic ring mixer with a compact intermediate frequency (IF) extraction," Progress In Electromagnetics Research Letters, Vol. 20, 175-184, 2011. Google Scholar
16. Zhang, B., Y. Fan, X. F. Chen, and F. Q. Zhong, "An improved 110-130-GHz fix-tuned subharmonic mixer with compact microstrip resonant cell structure," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 411-420, 2011.
doi:10.1163/156939311794362830 Google Scholar
17. Chien, W.-C., C.-M. Lin, Y.-H. Chang, and Y.-H. Wang, "A 9-21 GHz miniature monolithic image reject mixer in 0.18-μM CMOS technology," Progress In Electromagnetics Research Letters, Vol. 17, 105-114, 2010.
doi:10.2528/PIERL10072602 Google Scholar
18. Garcia, J. A., L. Cabria, R. Marante, L. Rizo, and A. Mediavilla, "An unbiased dual-mode mixing antenna for wireless transponders," Progress In Electromagnetics Research, Vol. 102, 1-14, 2010.
doi:10.2528/PIER09122209 Google Scholar
19. Ver Hoeye, S., C. Vazquez, M. Fernandez, L. F. Herran, and F. Las Heras, "Multi-harmonic DC-bias network based on arbitrarily width modulated microstrip line," Progress In Electromagnetics Research Letters, Vol. 11, 119-128, 2009.
doi:10.2528/PIERL09071605 Google Scholar
20. Gonzalez-Posadas, V., J. L. Jimenez-Martin, A. Parra-Cerrada, D. Segovia-Vargas, and L. E. Garcia-Munoz, "Oscillator accurate linear analysis and design. Classic linear methods review and comments," Progress In Electromagnetics Research, Vol. 118, 89-116, 2011.
doi:10.2528/PIER11041403 Google Scholar
21. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of an oscillator using the periodic averaging method," Progress In Electromagnetics Research, Vol. 79, 179-193, 2008.
doi:10.2528/PIER07100101 Google Scholar
22. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of an oscillator with distributed element resonator," Progress In Electromagnetics Research, Vol. 80, 241-252, 2008.
doi:10.2528/PIER07111701 Google Scholar
23. Fernandez, M., S. Ver Hoeye, C. Vazquez, G. R. Hotopan, R. Camblor, and F. Las Heras, "Design and analysis of a multi-carrier Tx-Rx system based on rationally synchronized oscillators for localization applications," Progress In Electromagnetics Research, Vol. 120, 1-16, 2011. Google Scholar
24. Ver Hoeye, S., A. Suarez, and S. Sancho, "Analysis of noise effects on the nonlinear dynamics of synchronized oscillators," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 9, 376-378, 2001.
doi:10.1109/7260.950766 Google Scholar
25. Jugo, J., J. Portilla, A. Anakabe, A. Suarez, and J. M. Collantes, "Closed-loop stability analysis of microwave amplifiers," IEE Electronics Letters, Vol. 37, No. 4, 226-228, 2001.
doi:10.1049/el:20010170 Google Scholar
26. Zhang, B., "A D-band power amplifier with 30-GHz bandwidth and 4.5-DBM Psat for high-speed communication system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.
doi:10.2528/PIER10060806 Google Scholar
27. Kung, F. and S.-K. Wong, "A WIMEDIA compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011. Google Scholar
28. Wei, H. C., R. M.Weng, and S. Y. Li, "A broadband high linearity and isolation down-conversion mixer for WIMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1555-1565, 2009.
doi:10.1163/156939309789476392 Google Scholar