1. Mackevich, J. and M. Shah, "Polymer outdoor insulating materials. Part I: Comparison of porcelain and polymer electrical insulation," IEEE Electrical Insulation Magazine, Vol. 13, 5-12, 1997.
doi:10.1109/57.591510 Google Scholar
2. Gorur, R., G. Karady, A. Jagota, M. Shah, and A. Yates, "Aging in silicone rubber used for outdoor insulation," IEEE Transactions on Power Delivery, Vol. 7, 525-538, 1992.
doi:10.1109/61.127045 Google Scholar
3. Zhu, Y., M. Otsubo, and C. Honda, "Behavior of water droplet on electrically stressed polymeric coating surface," Surface and Coatings Technology, Vol. 201, 5541-5546, Feb. 2007.
doi:10.1016/j.surfcoat.2006.07.116 Google Scholar
4. Phillips, A., D. Childs, and H. Schneider, "Aging of nonceramic insulators due to corona from water drops," IEEE Transactions on Power Delivery, Vol. 14, 1081-1089, 1999.
doi:10.1109/61.772357 Google Scholar
5. Gorus, R., E. Cherney, and R. Hackam, "The AC and DC performance of polymeric insulating materials under accelerated aging in a fog chamber," IEEE Transactions on Power Delivery, Vol. 3, 1892-1902, 1988.
doi:10.1109/61.193998 Google Scholar
6. Meyer, L., S. Jayaram, and E. Cherney, "Correlation of damage, dry band arcing energy, and temperature in inclined plane testing of silicone rubber for outdoor insulation," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, 424-432, 2004. Google Scholar
7. El-Hag, A. H., "Leakage current characterization for estimating the conditions of non-ceramic insulators' surfaces," Electric Power Systems Research, Vol. 77, 379-384, Mar. 2007.
doi:10.1016/j.epsr.2006.03.018 Google Scholar
8. Kumagai, S. and N. Yoshimura, "Leakage current characterization for estimating the conditions of ceramic and polymeric insulating surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, 681-690, 2004.
doi:10.1109/TDEI.2004.1324357 Google Scholar
9. Lopes, I., S. Jayaram, and E. Cherney, "A method for detecting the transition from corona from water droplets to dry-band arcing on silicone rubber insulators," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, 964-971, 2002.
doi:10.1109/TDEI.2002.1115491 Google Scholar
10. Fernando, S. C., K. L. Wong, and W. S. T. Rowe, "RF radiation from corona discharge between two water droplets on epoxy and silicone-rubber surfaces," Proceedings of Asia-Pacific Microwave Conference, 1582-1585, Melbourne, Australia, Dec. 5-8, 2011. Google Scholar
11. Sarathi, R. and G. Nagesh, "UHF technique for identification of discharges initiated by liquid droplet in epoxy nanocomposite insulation material under ac voltages," Journal of Physics D: Applied Physics, Vol. 41, 155407, 2008.
doi:10.1088/0022-3727/41/15/155407 Google Scholar
12. Higashiyama, Y., S. Yanase, and T. Sugimoto, "DC corona discharge from water droplets on a hydrophobic surface," Journal of Electrostatics, Vol. 55, 351-360, Jul. 2002.
doi:10.1016/S0304-3886(01)00217-0 Google Scholar
13. Imano, A. and A. Beroual, "Study of the behavior of AC discharges of water drops on both conducting and dielectric solid surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, 1569-1575, 2010.
doi:10.1109/TDEI.2010.5595559 Google Scholar
14. Rowland, S. M. and F. C. Lin, "Stability of alternating current discharges between water drops on insulation surfaces," Journal of Physics D: Applied Physics, Vol. 39, 3067-3076, 2006.
doi:10.1088/0022-3727/39/14/029 Google Scholar
15. Fernando, S. C., K. L. Wong, A. Bojovschi, and W. S. T. Rowe, "Detection of GHz frequency components of partial discharge in various media," Proceedings of 16th International Symposium on High Voltage Engineering (ISH 2009) , 687-692, Cape Town, South Africa, 2009. Google Scholar
16. El-Kishky, H. and R. Gorur, "Electric field computation on an insulating surface with discrete water droplets," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 3, 450-456, 1996.
doi:10.1109/94.506220 Google Scholar
17. Que, W., "Electric field and voltage distributions along nonceramic insulators,", Ph.D. Dissertation, Ohio State University, 2002. Google Scholar
18. Guan, Z., L. Wang, B. Yang, X. Liang, and Z. Li, "Electric field analysis of water drop corona," IEEE Transactions on Power Delivery, Vol. 20, 964-969, 2005.
doi:10.1109/TPWRD.2004.837672 Google Scholar
19. Fujii, O., K. Honsali, Y. Mizuno, and K. Naito, "A basic study on the e®ect of voltage stress on a water droplet on a silicone rubber surface," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 16, 116-122, 2009.
doi:10.1109/TDEI.2009.4784558 Google Scholar
20. Gao, H., Z. Jia, Y. Mao, Z. Guan, and L. Wang, "Effect of hydrophobicity on electric field distribution and discharges along various wetted hydrophobic surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, 435-443, 2008.
doi:10.1109/TDEI.2008.4483462 Google Scholar
21. Zhu, Y, M. Otsubo, C. Honda, Y. Hashimoto, and A. Ohno, "Mechanism for change in leakage current waveform on a wet ilicone rubber surface - A study using a dynamic 3-D model," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, 556-565, 2005.
doi:10.1109/TDEI.2005.1453460 Google Scholar
22. Kim, S., E. Cherney, and R. Hackam, "Effect of dry band arcing on the surface of RTV silicone rubber coatings," IEEE International Symposium on Electrical Insulation, 237-240, 1992. Google Scholar