Vol. 125
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-02-28
Detection of Corona and Dry-Band Arc Discharges on Nano-Composite Epoxy Insulators Using RF Sensing
By
Progress In Electromagnetics Research, Vol. 125, 237-254, 2012
Abstract
RF radiation due to corona and dry-band arc discharges have been observed using an antenna. Variations in radiated energy were observed due to change in the distance between two water droplets, the contact angle and the volume of the droplets, and the condition of the insulator surface. Changes in the frequency spectrum within the 800 MHz-900 MHz and 1.25 GHz-1.4 GHz frequency bands have been used to identify the transition from corona discharge to dry-band arc discharge. The 800 MHz-900 MHz emission band has also been used to monitor the condition of the insulator. These findings highlight the potential for RF sensing in the identification of partial discharges and insulator condition monitoring.
Citation
Sahan Chathura Fernando, Alan Khoi Loon Wong, and Wayne Rowe, "Detection of Corona and Dry-Band Arc Discharges on Nano-Composite Epoxy Insulators Using RF Sensing," Progress In Electromagnetics Research, Vol. 125, 237-254, 2012.
doi:10.2528/PIER12011201
References

1. Mackevich, J. and M. Shah, "Polymer outdoor insulating materials. Part I: Comparison of porcelain and polymer electrical insulation," IEEE Electrical Insulation Magazine, Vol. 13, 5-12, 1997.
doi:10.1109/57.591510

2. Gorur, R., G. Karady, A. Jagota, M. Shah, and A. Yates, "Aging in silicone rubber used for outdoor insulation," IEEE Transactions on Power Delivery, Vol. 7, 525-538, 1992.
doi:10.1109/61.127045

3. Zhu, Y., M. Otsubo, and C. Honda, "Behavior of water droplet on electrically stressed polymeric coating surface," Surface and Coatings Technology, Vol. 201, 5541-5546, Feb. 2007.
doi:10.1016/j.surfcoat.2006.07.116

4. Phillips, A., D. Childs, and H. Schneider, "Aging of nonceramic insulators due to corona from water drops," IEEE Transactions on Power Delivery, Vol. 14, 1081-1089, 1999.
doi:10.1109/61.772357

5. Gorus, R., E. Cherney, and R. Hackam, "The AC and DC performance of polymeric insulating materials under accelerated aging in a fog chamber," IEEE Transactions on Power Delivery, Vol. 3, 1892-1902, 1988.
doi:10.1109/61.193998

6. Meyer, L., S. Jayaram, and E. Cherney, "Correlation of damage, dry band arcing energy, and temperature in inclined plane testing of silicone rubber for outdoor insulation," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, 424-432, 2004.

7. El-Hag, A. H., "Leakage current characterization for estimating the conditions of non-ceramic insulators' surfaces," Electric Power Systems Research, Vol. 77, 379-384, Mar. 2007.
doi:10.1016/j.epsr.2006.03.018

8. Kumagai, S. and N. Yoshimura, "Leakage current characterization for estimating the conditions of ceramic and polymeric insulating surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, 681-690, 2004.
doi:10.1109/TDEI.2004.1324357

9. Lopes, I., S. Jayaram, and E. Cherney, "A method for detecting the transition from corona from water droplets to dry-band arcing on silicone rubber insulators," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, 964-971, 2002.
doi:10.1109/TDEI.2002.1115491

10. Fernando, S. C., K. L. Wong, and W. S. T. Rowe, "RF radiation from corona discharge between two water droplets on epoxy and silicone-rubber surfaces," Proceedings of Asia-Pacific Microwave Conference, 1582-1585, Melbourne, Australia, Dec. 5-8, 2011.

11. Sarathi, R. and G. Nagesh, "UHF technique for identification of discharges initiated by liquid droplet in epoxy nanocomposite insulation material under ac voltages," Journal of Physics D: Applied Physics, Vol. 41, 155407, 2008.
doi:10.1088/0022-3727/41/15/155407

12. Higashiyama, Y., S. Yanase, and T. Sugimoto, "DC corona discharge from water droplets on a hydrophobic surface," Journal of Electrostatics, Vol. 55, 351-360, Jul. 2002.
doi:10.1016/S0304-3886(01)00217-0

13. Imano, A. and A. Beroual, "Study of the behavior of AC discharges of water drops on both conducting and dielectric solid surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, 1569-1575, 2010.
doi:10.1109/TDEI.2010.5595559

14. Rowland, S. M. and F. C. Lin, "Stability of alternating current discharges between water drops on insulation surfaces," Journal of Physics D: Applied Physics, Vol. 39, 3067-3076, 2006.
doi:10.1088/0022-3727/39/14/029

15. Fernando, S. C., K. L. Wong, A. Bojovschi, and W. S. T. Rowe, "Detection of GHz frequency components of partial discharge in various media," Proceedings of 16th International Symposium on High Voltage Engineering (ISH 2009) , 687-692, Cape Town, South Africa, 2009.

16. El-Kishky, H. and R. Gorur, "Electric field computation on an insulating surface with discrete water droplets," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 3, 450-456, 1996.
doi:10.1109/94.506220

17. Que, W., "Electric field and voltage distributions along nonceramic insulators,", Ph.D. Dissertation, Ohio State University, 2002.

18. Guan, Z., L. Wang, B. Yang, X. Liang, and Z. Li, "Electric field analysis of water drop corona," IEEE Transactions on Power Delivery, Vol. 20, 964-969, 2005.
doi:10.1109/TPWRD.2004.837672

19. Fujii, O., K. Honsali, Y. Mizuno, and K. Naito, "A basic study on the e®ect of voltage stress on a water droplet on a silicone rubber surface," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 16, 116-122, 2009.
doi:10.1109/TDEI.2009.4784558

20. Gao, H., Z. Jia, Y. Mao, Z. Guan, and L. Wang, "Effect of hydrophobicity on electric field distribution and discharges along various wetted hydrophobic surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, 435-443, 2008.
doi:10.1109/TDEI.2008.4483462

21. Zhu, Y, M. Otsubo, C. Honda, Y. Hashimoto, and A. Ohno, "Mechanism for change in leakage current waveform on a wet ilicone rubber surface - A study using a dynamic 3-D model," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, 556-565, 2005.
doi:10.1109/TDEI.2005.1453460

22. Kim, S., E. Cherney, and R. Hackam, "Effect of dry band arcing on the surface of RTV silicone rubber coatings," IEEE International Symposium on Electrical Insulation, 237-240, 1992.