1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., SciTech Publication, Raleigh, NC, 2004.
2. Kraus, J. D. and R. J. Marhefka, Antennas, 3rd Ed., Mc Graw-Hill, New York, 2002.
3. Volakis, J. L., A. Alexanian, and J. M. Lin, "Broadband RCS reduction of rectangular patch by using distributed loading," Electron. Lett., Vol. 28, No. 25, 2322-2323, 1992. Google Scholar
4. Li, Y., H. Zhang, Y. Fu, and N. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas Wireless Propag. Lett., Vol. 7, 473-476, 2008. Google Scholar
5. Wang, F. W., S. X. Gong, S. Zhang, X. Mu, and T. Hong, "RCS reduction of array antennas with radar absorbing structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2487-2496, 2011.
doi:10.1163/156939311798806239 Google Scholar
6. Xu, H.-Y., H. Zhang, X. Yin, and K. Lu, "Ultra-wideband Koch fractal antenna with low backscattering cross section," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2615-2623, 2010.
doi:10.1163/156939310793675790 Google Scholar
7. Jiang, W., T. Hong, Y. Liu, S.-X. Gong, Y. Guan, and S. Cui, "A novel technique for radar cross section reduction of printed antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 51-60, 2010.
doi:10.1163/156939310790322145 Google Scholar
8. Gustafsson, M., "RCS reduction of integrated antenna arrays and radomes with resistive sheets," IEEE Antennas and Propag. Symp., 3479-3482, July 2006.
9. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1275-1278, 2009.
doi:10.1109/LAWP.2009.2037168 Google Scholar
10. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," IEEE Microwave Guided Wave Lett., Vol. 2, 196-198, 1992.
doi:10.1109/75.134353 Google Scholar
11. Jang, H.-K., W.-J. Lee, and C.-G. Kim, "Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band," Smart Materials and Structures, Vol. 20, 015007, 2011.
doi:10.1088/0964-1726/20/1/015007 Google Scholar
12. Hanse, R. C., "Relationships between antennas as scatterers and as radiators," Proc. IEEE, Vol. 77, No. 5, 659-662, May 1989.
doi:10.1109/5.32056 Google Scholar
13. Bletsas, A., A. G. Dimitriou, and J. N. Sahalos, "Improving backscatter radio tag efficiency," IEEE Trans. on Microwave Theory and Techniques, Vol. 58, No. 6, 1502-1509, Jun. 2010.
doi:10.1109/TMTT.2010.2047916 Google Scholar
14. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011. Google Scholar
15. Misran, N., R. Cahill, and V. F. Fusco, "RCS reduction technique for reflectarray antennas," Electron. Lett., Vol. 39, 1630-1631, Nov. 2003. Google Scholar
16. Li, H., B.-Z. Wang, G. Zheng, W. Shao, and L. Guo, "A reflectarray antenna backed on FSS for low RCS and high radiation performances ," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303 Google Scholar
17. Ren, L.-S., Y.-C. Jiao, J.-J. Zhao, and F. Li, "RCS reduction for a FSS-backed reflectarray using a ring element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.
doi:10.2528/PIERL11071201 Google Scholar
18. Genovesi, S. and A. Monorchio, "Low profile array with reduced radar cross section," 2010 URSI International Symposium on Electromagnetic Theory (EMTS), 799-802, Aug. 16-19, 2010. Google Scholar
19. Genovesi, S., F. Costa, and A. Monorchio, "Low profile array withreduced radar cross section by using frequency selective surfaces," IEEE Trans. on Antennas and Propagation, Vol. 60, No. 5, 2012. Google Scholar
20. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces ," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329 Google Scholar
21. Erdemli, Y. E., K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, "Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays," IEEE Trans. on Antennas and Propagation, Vol. 50, No. 12, 1716-1724, Dec. 2002.
doi:10.1109/TAP.2002.807377 Google Scholar
22. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. on Antennas and Propagation, Vol. 55, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567 Google Scholar
23. Al-Joumayly, M. and N. Behdad, "A new technique for design of low-pro¯le, second-order, bandpass frequency selective surfaces," IEEE Trans. on Antennas and Propagation, Vol. 57, 452-459, 2009.
doi:10.1109/TAP.2008.2011382 Google Scholar
24. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable fabry-perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702 Google Scholar
25. Newman, E. H., "Real frequency wideband impedance matching with non-minimum reactance equalizers," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 11, 3597-3603, Nov. 1991.
doi:10.1109/TAP.2005.858816 Google Scholar
26. Costa, F., S. Genovesi, and A. Monorchio, "On the bandwidth of high-impedance frequency selective surfaces," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346 Google Scholar
27. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency selective surfaces by a simple equivalent circuit model," IEEE Antennas and Propagation Magazine, Vol. 54, 2012. Google Scholar
28. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches ," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327 Google Scholar
29. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011. Google Scholar
30. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley & Sons, New York, 2000.
31. Tretyakov, S., Analytical Modelling in Applied Electromagnetics, Artech House, Boston, 2003.
32. Zhang, Y., B. Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas ," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
doi:10.1163/156939311794500269 Google Scholar
33. Glover, B., K. Kirschenmann, and K. W. Whites, "Engineering R-card surface resistivity with printed metallic patterns," Proceedings Metamaterials' 2007 International Congress on Advanced Electr. Materials in Microwaves and Optics, 621-624, Rome, Italy, Oct. 22-26, 2007. Google Scholar
34. Bianconi, G., F. Costa, S. Genovesi, and A. Monorchio, "Optimal design of dipole antennas backed by a finite high-impedance screen," Progress In Electromagnetics Research C, Vol. 18, 137-151, 2011. Google Scholar