1. Bendsoe, M. P. and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Comput. Methods Appl. Mech. Engrg., Vol. 71, No. 2, 197-224, 1988.
doi:10.1016/0045-7825(88)90086-2 Google Scholar
2. Yoo, J., N. Kikuchi, and J. L. Volakis, "Structural optimization in magnetic devices by the homogenization design method," IEEE T. Magn., Vol. 36, No. 3, 574-580, 2000.
doi:10.1109/20.846220 Google Scholar
3. Nomura, T., S. Nishiwaki, K. Sato, and K. Hirayama, "Topology optimization for the design of periodic microstructures composed of electromagnetic materials," Finite Elem. Anal. Des., Vol. 45, No. 3, 210-226, 2009.
doi:10.1016/j.finel.2008.10.006 Google Scholar
4. Nishiwaki, S., T. Nomura, S. Kinoshita, K. Izui, M. Yoshimura, K. Sato, and K. Hirayama, "Topology optimization for cross-section designs of electromagnetic waveguides targeting guiding characteristics," Finite Elem. Anal. Des., Vol. 45, No. 12, 944-957, 2009.
doi:10.1016/j.finel.2009.09.008 Google Scholar
5. Yamasaki, S., T. Nomura, A. Kawamoto, K. Sato, and S. Nishiwaki, "A level set-based topology optimization method targeting metallic waveguide design problems ," Int. J. Numer. Meth. Eng., Vol. 87, No. 9, 844-868, 2011.
doi:10.1002/nme.3135 Google Scholar
6. Borrvall, T. and J. Petersson, "Topology optimization of fluids in stoles flow," Int. J. Numer. Meth. Eng., Vol. 41, No. 1, 77-107, 2003.
doi:10.1002/fld.426 Google Scholar
7. Sigmund, O. and J. S. Jensen, "Systematic design of phononic band-gap materials and structures by topology optimization," Phil. Trans. R. Soc. Lond. A, Vol. 361, 1001-1019, 2003.
doi:10.1098/rsta.2003.1177 Google Scholar
8. Sigmund, O. and S. Torquato, "Design of materials with extreme thermal expansion using a three-phase topology optimization method ," J. Mech. Phys. Solids., Vol. 45, No. 6, 1037-1067, 1997.
doi:10.1016/S0022-5096(96)00114-7 Google Scholar
9. Larsen, U. D., O. Sigmund, and S. Bouwstra, "Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio ," J. Microelectromech. S., Vol. 6, No. 2, 99-106, 1997.
doi:10.1109/84.585787 Google Scholar
10. Sigmund, O., "Materials with prescribed constitutive parameters: an inverse homogenization problem," INT. J. Solids Struct., Vol. 31, No. 17, 2313-2329, 1994.
doi:10.1016/0020-7683(94)90154-6 Google Scholar
11. Choi, J. S. and J. Yoo, "Design and application of layered composites with the prescribed magnetic permeability," Int. J. Numer. Meth. Eng., Vol. 82, No. 1, 1-25, 2010. Google Scholar
12. El-Kahlout, Y. and G. Kiziltas, "Inverse synthesis of electromagnetic materials using homogenization based topology optimization," Progress In Electromagnetics Research, Vol. 115, 343-380, 2011. Google Scholar
13. Sihvola, A., Electromagnetic Mixing Formulas and Applicataions, The Institution of Engineering and Technology, London, 1999.
14. Bensoussan, A., J. L. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company, Amsterdam, 1978.
15. Sanchez-Palencia, E., "Non-homogeneous media and vibration theory," Lecture Notes in Physics, Vol. 127, Springer-Verlag, Berlin, 1980. Google Scholar
16. Hashin, Z., "Analysis of composite materials --- A survey," J. Appl. Mech., Vol. 50, No. 3, 481-505, 1983.
doi:10.1115/1.3167081 Google Scholar
17. Milton, G. W., The Theory of Composites, Cambridge University Press, Cambridge, 2001.
18. Sigmund, O., "On the usefulness of non-gradient approaches in topology optimization," Struct. Multidisc. Optim., Vol. 43, No. 5, 589-596, 2011.
doi:10.1007/s00158-011-0638-7 Google Scholar
19. Bendsoe, M. P. and O. Sigmund, "Material interpolation schemes in topology optimization," Arch. Appl. Mech., Vol. 69, No. 9, 635-654, 1999.
doi:10.1007/s004190050248 Google Scholar
20. Guest, J. K., J. H. Prévost, and T. Belytschko, "Achieving minimum length scale in topology optimization using nodal design variables and projection functions ," Int. J. Numer. Meth. Eng., Vol. 61, No. 2, 238-254, 2004.
doi:10.1002/nme.1064 Google Scholar
21. Sigmund, O., "Morphology-based black and white filters for topology optimization," Struct. Multidisc. Optim., Vol. 33, No. 4-5, 401-424, 2007.
doi:10.1007/s00158-006-0087-x Google Scholar
22. Olesen, L. H., "A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow," Int. J. Numer. Meth. Eng., Vol. 65, No. 7, 975-1001, 2006.
doi:10.1002/nme.1468 Google Scholar
23. Milton, G. W., "Bounds on the complex permittivity of a two-component composite material," J. Appl. Phys., Vol. 52, No. 8, 5286-5293, 1981.
doi:10.1063/1.329385 Google Scholar
24. Hashin, Z., "The elastic moduli of heterogeneous materials," J. Appl. Mech., Vol. 29, No. 1, 143-150, 1962.
doi:10.1115/1.3636446 Google Scholar
25. Francfort, G. and F. Murat, "Homogenization and optimal bounds in linear elasticity," Archive for Rational Mechanics and Analysis, Vol. 94, No. 4, 307-334, 1986.
doi:10.1007/BF00280908 Google Scholar
26. Lurie, K. A. and A. V. Cherkaev, "Optimization of properties of multicomponent isotropic composites," J. Optimiz. Theory App., Vol. 46, No. 4, 571-580, 1985.
doi:10.1007/BF00939160 Google Scholar
27. Milton, G. W., "Modelling the Properties of Composites by Laminates,", Vol. 1, 150-174, Springer-Verlag, New York, 1985. Google Scholar
28. Norris, A. N., "A differential scheme for the effective moduli of composites," Mech. Mater., Vol. 4, No. 1, 1-16, 1985.
doi:10.1016/0167-6636(85)90002-X Google Scholar
29. Sigmund, O., "A new class of extremal composites," J. Mech. Phys. Solids, Vol. 48, No. 2, 397-428, 2000.
doi:10.1016/S0022-5096(99)00034-4 Google Scholar
30. Grabovsky, Y. and R. V. Kohn, "Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: the Vigdergauz microstructure," J. Mech. Phys. Solids, Vol. 43, No. 6, 949-972, 1995.
doi:10.1016/0022-5096(95)00017-D Google Scholar
31. Vigdergauz, S., "Energy-minimizing inclusions in a planar elastic structure with macroisotropy," Struct. Optimization, Vol. 17, No. 2-3, 104-112, 1999.
doi:10.1007/BF01195935 Google Scholar
32. Svanberg, K., "A class of globally convergent optimization methods based on conservative convex separable approximations," SIAM J Optimiz., Vol. 12, No. 2, 555-573, 2002.
doi:10.1137/S1052623499362822 Google Scholar
33. Rayleigh, L., "On the influence of obstacles arranged in rectangular order upon the properties of a medium," Philos. Mag., Vol. 34, No. 211, 481-502, 1892. Google Scholar
34. Wallén, H., H. Kettunen, and A. Sihvola, "Composite near-field superlens design using mixing formulas and simulations," Metamaterials, Vol. 3, No. 3-4, 129-139, 2009.
doi:10.1016/j.metmat.2009.08.002 Google Scholar