1. Celik, M. and A. C. Cangellaris, "Simulation of dispersive multiconductor transmission lines by Pade approximation via the Lanczos process ," IEEE Trans. Microwave Theory Tech., Vol. 44, 2525-2535, Dec. 1996.
doi:10.1109/22.554593 Google Scholar
2. Odabasioglu, A., M. Celik, and L. T. Pileggi, "PRIMA: Passive reduced order interconnect macromodeling algorithm," IEEE Trans. Computer-Aided Design, Vol. 17, 645-653, Aug. 1998.
doi:10.1109/43.712097 Google Scholar
3. Sheehan, B. N., "ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization," Proc. IEEE 36th Design Autom. Conf., 17-21, Jun. 1999. Google Scholar
4. Rewienski, M. and J. White, "A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 2, 155-170, Feb. 2003.
doi:10.1109/TCAD.2002.806601 Google Scholar
5. Cangellaris, A. C., M. Celik, S. Pasha, and L. Zhao, "Electromagnetic model order reduction for system-level modeling," IEEE Trans. Microwave Theory Tech., Vol. 7, 840-850, Jun. 1999.
doi:10.1109/22.769317 Google Scholar
6. Denecker, B., F. Olyslager, L. Knockaert, and D. De Zutter, "Automatic generation of subdomain models in 2-D FDTD using reduced order modeling," IEEE Microwave Guided Wave Lett., Vol. 10, 301-303, Aug. 2000.
doi:10.1109/75.862221 Google Scholar
7. Kulas, L. and M. Mrozowski, "Reduced-order models in FDTD," IEEE Microw. Wireless Comp. Lett., Vol. 11, No. 10, 422-424, Oct. 2001.
doi:10.1109/7260.959317 Google Scholar
8. Kulas, L. and M. Mrozowski, "Reduced order models of refined Yee's cells," IEEE Microw. Wireless Comp. Lett., Vol. 13, 164-166, Apr. 2003.
doi:10.1109/LMWC.2003.811068 Google Scholar
9. Zhu, Y. and A. C. Cangellaris, "Macro-elements for efficient FEM simulation of small geometric features in waveguide components," IEEE Trans. Microwave Theory Tech., Vol. 48, 2254-2260, Dec. 2000.
doi:10.1109/22.898972 Google Scholar
10. Fotyga, G., K. Nyka, and L. Kulas, "A new type of macro-elements for efficient two-dimensional FEM analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 270-273, 2011.
doi:10.1109/LAWP.2011.2134063 Google Scholar
11. Lee, S.-H. and J. M. Jin, "Fast reduced-order finite-element modeling of lossy thin wires using lumped impedance elements," IEEE Trans. Adv. Packag., Vol. 33, No. 1, 212-218, Feb. 2010.
doi:10.1109/TADVP.2009.2015958 Google Scholar
12. Kulas, L. and M. Mrozowski, "Accelerated analysis of resonators by a combined domain decomposition - Model order reduction approach ," 34th European Microwave Conference, Vol. 2, 585-588, Oct. 14, 2004. Google Scholar
13. De la Rubia, V. and J. Zapata, "Microwave circuit design by means of direct decomposition in the finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 7, 1520-1530, Jul. 2007.
doi:10.1109/TMTT.2007.900307 Google Scholar
14. Kulas, L. and M. Mrozowski, "Macromodels in the frequency domain analysis of microwave resonators," IEEE Microw. Wireless Comp. Lett., Vol. 14, No. 3, 94-96, Mar. 2004.
doi:10.1109/LMWC.2004.825165 Google Scholar
15. Kulas, L., P. Kowalczyk, and M. Mrozowski, "A novel modal technique for time and frequency domain analysis of waveguide components," IEEE Microw. Wireless Comp. Lett., Vol. 21, No. 1, 7-9, Jan. 2011.
doi:10.1109/LMWC.2010.2089439 Google Scholar
16. Remis, R. F., "An efficient model-order reduction approach to low-frequency transmission line modeling," Progress In Electromagnetics Research, Vol. 101, 139-155, 2010.
doi:10.2528/PIER09123006 Google Scholar
17. Zhang, Z. and Y. H. Lee, "An automatic model order reduction of a UWB antenna system," Progress In Electromagnetics Research, Vol. 104, 267-282, 2010. Google Scholar
18. Song, Z., D. Su, F. Duval, and A. Louis, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011. Google Scholar
19. Rubio, J., J. Arroyo, and J. Zapata, "Analysis of passive microwave circuits by using hybrid 2-D and 3-D finite-element mode-matching method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1746-1749, Sep. 1999.
doi:10.1109/22.788618 Google Scholar
20. Mrozowski, M., "A hybrid PEE-FDTD algorithm for accelerated time domain analysis of electromagnetic waves in shielded structures," IEEE Microwave Guided Wave Lett., Vol. 4, No. 10, 323-325, Oct. 1994.
doi:10.1109/75.324704 Google Scholar
21. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd edition, IEEE Press, New York, 2002.
22. Pelosi, G., R. Coccioli, and S. Selleri, Quick Finite Elements for Electromagnetic Waves, 2nd Edition, Artech House Antenna Library, 2009.
23. Ingelstrom, P., "A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes ," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 1, 106-114, Jan. 2006.
doi:10.1109/TMTT.2005.860295 Google Scholar
24. Kowalczyk, P., L. Kulas, and M. Mrozowski, "Analysis of microstructured optical fibers using compact macromodels," Opt. Express, Vol. 19, No. 20, 19354-19364, 2011.
doi:10.1364/OE.19.019354 Google Scholar
25. Lou, Z. and J. M. Jin, "An accurate waveguide port boundary condition for the time-domain finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 9, 3014-3023, Sep. 2005.
doi:10.1109/TMTT.2005.854223 Google Scholar
26. Stamatopoulos, I. D. and I. D. Robertson, "Rigorous network representation of microwave components by the use of indirect mode matching," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 935-944, Mar. 2004.
doi:10.1109/TMTT.2004.823597 Google Scholar
27. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Wiley, New York, 2006.
28. ANSYS HFSS, , "3D full-wave electromagnetic field simulation," http://www.anasoft.com/products/hf/hfss/overview.cfm. Google Scholar
29. Alessandri, F., M. Chiodetti, A. Giugliarelli, D. Maiarelli, G. Martirano, D. Schmitt, L. Vanni, and F. Vitulli, "The electric feld integral-equation method for the analysis and design of a class of rectangular cavity flters loaded by dielectric and metallic cylindrical pucks," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, 1790-1797, Aug. 2004.
doi:10.1109/TMTT.2004.831583 Google Scholar