Vol. 128
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-01
Adaptive Clutter Suppression for Airborne Random Pulse Repetition Interval Radar Based on Compressed Sensing
By
Progress In Electromagnetics Research, Vol. 128, 291-311, 2012
Abstract
We present an adaptive clutter suppression method for airborne random pulse repetition interval radar by using prior knowledge of clutter boundary in Doppler spectrum. In this method, by exploiting the intrinsic sparsity, compressed sensing based on iterative grid optimization (CS-IGO) is applied to directly recover the clutter spectrum with only the test range cell instead of nonhomogeneous training data from adjacent range cells. Since the sensing matrix and clutter spectrum obtained by CS-IGO are well adapted to the data, the prewhitening filter can be effectively obtained to cancel the mainlobe clutter. Further, the clutter residue can be suppressed by the iterative reweighted l1 minimization to enhance the target response. Simulation results show that the approach is capable of effective suppression of clutter and precise recovery of targets' unambiguous spectrum, offering a high performance of output signal to clutter and noise ratio.
Citation
Zhen Liu Xizhang Wei Xiang Li , "Adaptive Clutter Suppression for Airborne Random Pulse Repetition Interval Radar Based on Compressed Sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.
doi:10.2528/PIER12022001
http://www.jpier.org/PIER/pier.php?paper=12022001
References

1. Kaveh, M. and G. R. Cooper, "Average ambiguity function for a randomly staggered pulse sequence," IEEE Trans. Aerosp. Electron. Syst., Vol. 12, No. 3, 410-413, May 1976.
doi:10.1109/TAES.1976.308245

2. Vergara-Dominguez, L., "Analysis of the digital MTI filter with random PRI," IEE Proceedings-F, Vol. 140, No. 2, 129-137, Apr. 1993.

3. Cook, C. E. and M. Bernfeld, Radar Signals: An Introduction to Theory and Application, Academic Press, New York, 1967.

4. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr.2006.
doi:10.1109/TIT.2006.871582

5. Candès, E. and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans.Inf. Theory, Vol. 52, No. 12, 5406-5425, Dec.2006.
doi:10.1109/TIT.2006.885507

6. Candès, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, Feb.2006.
doi:10.1109/TIT.2005.862083

7. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

8. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, Jun.2011.

9. Quan, Y. H., L. Zhang, M. D. Xing, and Z. Bao, "Velocity ambiguity resolving for moving target indication by compressed sensing," Electronics Letters, Vol. 47, No. 22, Oct.2011.

10. Barton, D. K. and S. A. Leonov, Radar Technology Encyclopedia, Artech House, Boston, London, 1998.

11. Ender, J. H. G., "On compressive sensing applied to radar," Signal Processing, No. 90, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009

12. Khwaja, A. S. and J. Ma, "Applications of compressed sensing for SAR moving-target velocity estimation and image compression," IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 8, 2848-2860, 2011.
doi:10.1109/TIM.2011.2122190

13. Zhang, L., et al., "Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3824-3838, Oct.2010.
doi:10.1109/TGRS.2010.2048575

14. Candès, E., M. Wakin, and S. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Anal. Appl., Vol. 14, No. 5, 877-905, Dec.2008.
doi:10.1007/s00041-008-9045-x

15. Sun, K., H. Meng, Y. Wang, and X. Wang, "Direct data domain STAP using sparse representation of clutter spectrum," Signal Processing, Vol. 91, No. 9, 2222-2236, 2006.
doi:10.1016/j.sigpro.2011.04.006

16. Choi, W., T. K. Sarkar, W. Hong, and E. L. Mokole, "Adaptive processing using real weights based on a direct data domain least squares approach," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 182-191, 2006.
doi:10.1109/TAP.2005.859753

17. Burintramart, S., T. K. Sarkar, Y. Zhang, and M. C. Wicks, "Performance comparison between statistical-based and directdata domain STAPs," Digital Signal Processing, Vol. 17, 737-755, 2007.
doi:10.1016/j.dsp.2006.10.002

18. Liu, Z., H.Wang, Y. Qin, and X. Li, "Adaptive clutter suppression for airborne random PRI radar based on improved compressed sensing," Proc. CoSeRa2012, 2012.

19. Levanon, N. and E. Mozeson, Radar Signals, Wiley, New York, 2004.
doi:10.1002/0471663085

20. Zhang, M. and X. Wang, Radar Systems, Publishing House of Electronics Industry, Beijing,2006.

21. Grant, M. and S. Boyd, "CVX: Matlab software for disciplined convex programming,", http://stanford.edu/ boyd/cvxCVX, 2008.

22. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problems," Proceedings of the IEEE, Vol. 98, No. 6, 948-958, Jun.2010.
doi:10.1109/JPROC.2010.2044010

23. Yang, A. Y., A. Ganesh, Z. Zhou, S. S. Sastry, and Y. Ma, "A review of fast l1-minimization algorithms for robust face recognition,", http://arXiv:1007.3753v2 [cs.CV] 29 Jul 2010,2010.

24. Mailhe, B., R. Gribonval, P. Vandergheynst, and F. Bimbot, "Fast orthogonal sparse approximation algorithms over local dictionaries," Signal Processing, doi:10.1016/j.sigpro.2011.01.004,2011.

25. Donoho, D. L. and Y. Tsaig, "Fast solution of l1-norm minimization problems when the solution may be sparse," IEEE Trans. Inf. Theory, Vol. 54, No. 11, 4789-4811, Nov.2008.
doi:10.1109/TIT.2008.929958