1. Kaveh, M. and G. R. Cooper, "Average ambiguity function for a randomly staggered pulse sequence," IEEE Trans. Aerosp. Electron. Syst., Vol. 12, No. 3, 410-413, May 1976.
doi:10.1109/TAES.1976.308245 Google Scholar
2. Vergara-Dominguez, L., "Analysis of the digital MTI filter with random PRI," IEE Proceedings-F, Vol. 140, No. 2, 129-137, Apr. 1993. Google Scholar
3. Cook, C. E. and M. Bernfeld, Radar Signals: An Introduction to Theory and Application, Academic Press, New York, 1967.
4. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr.2006.
doi:10.1109/TIT.2006.871582 Google Scholar
5. Candès, E. and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans.Inf. Theory, Vol. 52, No. 12, 5406-5425, Dec.2006.
doi:10.1109/TIT.2006.885507 Google Scholar
6. Candès, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, Feb.2006.
doi:10.1109/TIT.2005.862083 Google Scholar
7. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805 Google Scholar
8. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, Jun.2011. Google Scholar
9. Quan, Y. H., L. Zhang, M. D. Xing, and Z. Bao, "Velocity ambiguity resolving for moving target indication by compressed sensing," Electronics Letters, Vol. 47, No. 22, Oct.2011. Google Scholar
10. Barton, D. K. and S. A. Leonov, Radar Technology Encyclopedia, Artech House, Boston, London, 1998.
11. Ender, J. H. G., "On compressive sensing applied to radar," Signal Processing, No. 90, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009 Google Scholar
12. Khwaja, A. S. and J. Ma, "Applications of compressed sensing for SAR moving-target velocity estimation and image compression," IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 8, 2848-2860, 2011.
doi:10.1109/TIM.2011.2122190 Google Scholar
13. Zhang, L., M. Xing, C.-W. Qiu, J. Li, J. Sheng, Y. Li, et al. "Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3824-3838, Oct.2010.
doi:10.1109/TGRS.2010.2048575 Google Scholar
14. Candès, E., M. Wakin, and S. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Anal. Appl., Vol. 14, No. 5, 877-905, Dec.2008.
doi:10.1007/s00041-008-9045-x Google Scholar
15. Sun, K., H. Meng, Y. Wang, and X. Wang, "Direct data domain STAP using sparse representation of clutter spectrum," Signal Processing, Vol. 91, No. 9, 2222-2236, 2006.
doi:10.1016/j.sigpro.2011.04.006 Google Scholar
16. Choi, W., T. K. Sarkar, W. Hong, and E. L. Mokole, "Adaptive processing using real weights based on a direct data domain least squares approach," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 182-191, 2006.
doi:10.1109/TAP.2005.859753 Google Scholar
17. Burintramart, S., T. K. Sarkar, Y. Zhang, and M. C. Wicks, "Performance comparison between statistical-based and directdata domain STAPs," Digital Signal Processing, Vol. 17, 737-755, 2007.
doi:10.1016/j.dsp.2006.10.002 Google Scholar
18. Liu, Z., H.Wang, Y. Qin, and X. Li, "Adaptive clutter suppression for airborne random PRI radar based on improved compressed sensing," Proc. CoSeRa2012, 2012. Google Scholar
19. Levanon, N. and E. Mozeson, Radar Signals, Wiley, New York, 2004.
doi:10.1002/0471663085
20. Zhang, M. and X. Wang, Radar Systems, Publishing House of Electronics Industry, Beijing,2006.
21. Grant, M. and S. Boyd, "CVX: Matlab software for disciplined convex programming,", http://stanford.edu/ boyd/cvxCVX, 2008. Google Scholar
22. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problems," Proceedings of the IEEE, Vol. 98, No. 6, 948-958, Jun.2010.
doi:10.1109/JPROC.2010.2044010 Google Scholar
23. Yang, A. Y., A. Ganesh, Z. Zhou, S. S. Sastry, and Y. Ma, "A review of fast l1-minimization algorithms for robust face recognition,", http://arXiv:1007.3753v2 [cs.CV] 29 Jul 2010,2010. Google Scholar
24. Mailhe, B., R. Gribonval, P. Vandergheynst, and F. Bimbot, "Fast orthogonal sparse approximation algorithms over local dictionaries," Signal Processing, doi:10.1016/j.sigpro.2011.01.004,2011. Google Scholar
25. Donoho, D. L. and Y. Tsaig, "Fast solution of l1-norm minimization problems when the solution may be sparse," IEEE Trans. Inf. Theory, Vol. 54, No. 11, 4789-4811, Nov.2008.
doi:10.1109/TIT.2008.929958 Google Scholar