1. Vedaprabhu, B. and K. J. Vinoy, "An integrated wideband multifunctional antenna using a microstrip patch with two U-slots," Progress In Electromagnetics Research B, Vol. 22, 221-235, 2010.
doi:10.2528/PIERB10050402 Google Scholar
2. Zhang, Y., B.-Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
doi:10.1163/156939311794500269 Google Scholar
3. Jackson, D. R., "The RCS of a rectangular microstrip patch in a substrate-superstrate geometry ," IEEE Trans. on Antenna and Propagation, Vol. 38, No. 1, 2-8, 1990.
doi:10.1109/8.43583 Google Scholar
4. Wilsen, C. B. and D. B. Davidson, "The radar cross section reduction of microstrip patches," IEEE Africon 4th, Vol. 2, No. 1, 730-733, 1996. Google Scholar
5. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," Microwave and Guided Wave Letters, Vol. 2, No. 5, 196-198, 1992.
doi:10.1109/75.134353 Google Scholar
6. Yang, H.-Y., J. A. Castaneda, and N. G. Alexopoulos, "Multifunctional antennas with low RCS," Antennas and Propagation Society International Symposium, Vol. 4, 2240-2243, 1992.
7. Volakis, J. L., A. Alexanian, and J. M. Lin, "Broadband RCS reduction of rectangular patch by using distributed loading," Electronics Letters, Vol. 28, 2322-2323, 1992. Google Scholar
8. Yang, H. and S. Gong, "RCS reduction technique out of operation of microstrip antennas," Journal of Microwaves, Vol. 20, No. 1, 35-39, 2004. Google Scholar
9. Ma, H., C. Xu, and H. Zheng, "Effect of impedance load on radiation and scattering of microstrip antenna," Modern Electronic Technology, Vol. 6, 6-7, 2004. Google Scholar
10. Zhao, S.-C., B.-Z. Wang, and Q.-Q. He, "Broadband radar cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
doi:10.2528/PIER07101002 Google Scholar
11. Zhao, S.-C., B.-Z. Wang, and W. Shao, "Reconfigurable Yagi-Uda substrate for radar cross section reduction of patch antenna," Progress In Electromagnetics Research B, Vol. 11, 173-187, 2009.
doi:10.2528/PIERB08120101 Google Scholar
12. Xu, H.-Y., H. Zhang, X. Yin, and K. Lu, "Ultra-wideband koch fractal antenna with low backscattering cross section," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2615-2623, 2010.
doi:10.1163/156939310793675790 Google Scholar
13. Zhu, X., W. Shao, J.-L. Li, and Y. Dong, "Design and optimization of low RCS patch antennas based on a genetic algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
doi:10.2528/PIER11100703 Google Scholar
14. Jiang, W., T. Hong, Y. Liu, S.-X. Gong, Y. Guan, and S. Cui, "A novel technique for radar cross section reduction of printed antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 51-60, 2010.
doi:10.1163/156939310790322145 Google Scholar
15. Hong, T., L.-T. Jiang, Y.-X. Xu, S.-X. Gong, and W. Jiang, "Radiation and scattering analysis of a novel circularly polarized slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1709-1720, 2010. Google Scholar
16. Ren, L.-S., Y.-C. Jiao, J.-J. Zhao, and F. Li, "RCS reduction for a FSS-backed reflectarray using a ring element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.
doi:10.2528/PIERL11071201 Google Scholar
17. Aberle, J. T., M. Chu, and C. R. Birtcher, "Scattering and radiation properties of varactor-tuned microstrip antennas," AP-S, Vol. 4, 2229-2232, 1992. Google Scholar
18. Janaswamy, R. and S.-W. Lee, "Scattering from dipoles loaded with diodes," IEEE Trans. on Antenna and Propagation, Vol. 36, No. 11, 1649-1651, 1988.
doi:10.1109/8.9722 Google Scholar
19. Bai, Y.-Y., S. Q. Xiao, M.-C. Tang, et al. "Wide-angle scanning phased array with pattern reconfigurable elements," IEEE Trans. on Antenna and Propagation, Vol. 59, No. 11, 4071-4076, 2011.
doi:10.1109/TAP.2011.2164176 Google Scholar
20. Lin, S.-Y., Y.-C. Lin, and J.-Y. Lee, "T-strip FED patch antenna with reconfigurable polarization," Progress In Electromagnetics Research Letters, Vol. 15, 163-173, 2010.
doi:10.2528/PIERL10051801 Google Scholar
21. Jamlos, M. F., O. A. Aziz, T. B. A. Rahman, M. R. B. Kamarudin, P. Saad, M. T. Ali, and M. N. Md Tan, "A reconfigurable radial line slot array (RLSA) antenna for beam shape and broadside application," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1171-1182, 2010.
doi:10.1163/156939310791586007 Google Scholar
22. Raedi, Y., S. Nikmehr, and A. Poorziad, "A novel bandwidth enhancement technique for X-band RF MEMS actuated reconfigurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.
doi:10.2528/PIER10101201 Google Scholar
23. Vendelin, G. D., A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, Ch. 12, Ch. 3, John Wiley & Sons, Inc., New Jersey, 2005.
24. Zhou, B. and G.-Z. Lu, "RF PIN diode switch in reconfigurable antenna," Journal of Communication University of China (Science and Technology), Vol. 16, No. 4, 35-38, 2009. Google Scholar