1. Baughman, R. H., A. A. Zakhidov, and W. A. de Heer, "Carbon nanotubes --- The route toward applications," Science, Vol. 297, 787-792, August 2, 2002.
doi:10.1126/science.1060928 Google Scholar
2. Milne, W. I., K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, "Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition," Diamond and Related Materials, Vol. 12, 422-428, 2003.
doi:10.1016/S0925-9635(02)00292-3 Google Scholar
3. Wang, X. Q., M. Wang, H. L. Ge, Q. Chen, and Y. B. Xu, "Modeling and simulation for the field emission of carbon nanotubes array," Physica E: Low-dimensional Systems and Nanostructures, Vol. 30, 101-106, 2005.
doi:10.1016/j.physe.2005.07.012 Google Scholar
4. Deuk-Seok, C., S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, C. K. Lee, J. H. Yoo, K. Jong-Min, J. E. Jung, Y. W. Jin, Y. J. Park, and J. B. You, "Carbon nanotube electron emitters with a gated structure using backside exposure processes," Applied Physics Letters, Vol. 80, 4045-4047, 2002.
doi:10.1063/1.1480104 Google Scholar
5. Chen, Y., C. Liu, and Y. Tzeng, "Carbon-nanotube cold cathodes as non-contact electrical couplers," Diamond and Related Materials, Vol. 12, 1723-1728, 2003.
doi:10.1016/S0925-9635(03)00271-1 Google Scholar
6. Wilkinson, T. D., X. Wang, K. B. K. Teo, and W. I. Milne, "Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices," Advanced Materials, Vol. 20, 363-366, 2008.
doi:10.1002/adma.200701910 Google Scholar
7. Butt, H., R. Ranjith, T. D. Wilkinson, and G. A. J. Amaratunga, "Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device," IEEE Transactions on Nanotechnology, Vol. 10, No. 3, 2011.
doi:10.1109/TNANO.2010.2050596 Google Scholar
8. Qing, D., R. Ranjith, B. Haider, W. Kanghee, W. Xiaozhi, D. W. Timothy, and A. Gehan, "Transparent liquid-crystal-based microlens array using vertically aligned carbon nanofiber electrodes on quartz substrates ," Nanotechnology, Vol. 22, 115201, 2011. Google Scholar
9. Rajasekharan, R., C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, "Electrically reconfigurable nanophotonic hybrid grating lens array," Applied Physics Letters, Vol. 96, 233108-3, 2010.
doi:10.1063/1.3449130 Google Scholar
10. COMSOL, , COMSOL multiphysics, 3.3a Ed, p. FEMLAB is registered trademark of COMSOL, 2007.
11. Rajasekharan-Unnithan, R., H. Butt, and T. D. Wilkinson, "Optical phase modulation using a hybrid carbon nanotube-liquid-crystal nanophotonic device," Opt. Lett., Vol. 34, 1237-1239, 2009. Google Scholar
12. Ye, M., B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Optics Communications, Vol. 259, 710-722, 2006.
doi:10.1016/j.optcom.2005.09.050 Google Scholar
13. Wang, B., M. Ye, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photonics Technology Letters, Vol. 18, 79-81, 2006.
doi:10.1109/LPT.2005.860397 Google Scholar
14. Rajasekharan-Unnithan, R., "Nanophotonic devices based on carbon nanotubes and liquid crystals," Engineering, University of Cambridge, Cambridge, 2011. Google Scholar