1. Gross, F. B., Smart Antennas for Wireless Communications with Matlab, McGraw-Hill, New York, 2005.
2. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227 Google Scholar
3. Jabbar, A. N., "A novel ultra-fast ultra-simple adaptive blind beamforming algorithm for smart antenna arrays," Progress In Electromagnetics Research B, Vol. 35, 329-348, 2011.
doi:10.2528/PIERB11091504 Google Scholar
4. Li, J. and P. Stoica, Robust Adaptive Beamforming, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.
5. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-network-based adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303 Google Scholar
6. Umrani, A. W., Y. Guan, and F. A. Umrani, "Effect of steering error vector and angular power distributions on beamforming and transmit diversity systems in correlated fading channel," Progress In Electromagnetics Research, Vol. 105, 383-402, 2010.
doi:10.2528/PIER10042902 Google Scholar
7. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001 Google Scholar
8. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetics Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205 Google Scholar
9. Lee, J.-H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the music algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011. Google Scholar
10. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011. Google Scholar
11. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
doi:10.2528/PIER11052205 Google Scholar
12. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "Near optimal robust adaptive beamforming approach based on evolutionary algorithm," Progress In Electromagnetics Research B, Vol. 29, 157-174, 2011.
doi:10.2528/PIERB10110810 Google Scholar
13. Lee, J.-H., G.-W. Jung, and W.-C. Tsai, "Antenna array beamforming in the presence of spatial information uncertainties," Progress In Electromagnetics Research B, Vol. 31, 139-156, 2011. Google Scholar
14. Lee, J.-H., "Robust antenna array beamforming under cycle frequency mismatch ," Progress In Electromagnetics Research B, Vol. 35, 307-328, 2011.
doi:10.2528/PIERB11082207 Google Scholar
15. Liu, Y., Q. Wan, and X. Chu, "A robust beamformer based on weighted sparse constraint," Progress In Electromagnetics Research Letters, Vol. 16, 53-60, 2010.
doi:10.2528/PIERL10062308 Google Scholar
16. Liu, Y. and Q. Wan, "Total difference based partial sparse LCMV beamformer," Progress In Electromagnetics Research Letters, Vol. 18, 97-103, 2010.
doi:10.2528/PIERL10092705 Google Scholar
17. Mallipeddi, R., J. P. Lie, S. G. Razul, P. N. Suganthan, and C. M. S. See, "Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch," Progress In Electromagnetics Research Letters, Vol. 25, 37-46, 2011. Google Scholar
18. Christodoulou, C. and M. Georgiopoulos, Applications of Neural Networks in Electromagnetics, Artech House, Boston-London, 2001.
19. Gotsis, K. A., K. Siakavara, and J. N. Sahalos, "On the direction of arrival (DoA) estimation for a switched-beam antenna system using neural networks," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1399-1411, May 2009.
doi:10.1109/TAP.2009.2016721 Google Scholar
20. Bregains, J. C., J. Dorado, M. Gestal, J. A. Rodriguez, F. Ares, and A. Pazos, "Avoiding interference in planar arrays through the use of artificial neural networks," IEEE Antennas and Propagation Magazine, Vol. 44, No. 6, 61-65, August 2002.
doi:10.1109/MAP.2002.1043149 Google Scholar
21. Luo, M. and K.-M. Huang, "Prediction of the electromagnetic field in metallic enclosures using artificial neural networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011. Google Scholar
22. Kim, Y. and H. Ling, "Direction of arrival estimation of humans with a small sensor array using an artificial neural network," Progress In Electromagnetics Research B, Vol. 27, 127-149, 2011. Google Scholar
23. Vakula, D. and N. V. S. N. Sarma, "Using neural networks for fault detection in planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 14, 21-30, 2010.
doi:10.2528/PIERL10030401 Google Scholar
24. Peng, H., Z. Yang, and T. Yang, "Calibration of a six-port receiver for direction ¯nding using the artificial neural network technique," Progress In Electromagnetics Research Letters, Vol. 27, 17-24, 2011.
doi:10.2528/PIERL11081504 Google Scholar
25. Sacha, G. M., F. B. Rodr¶³guez, E. Serrano, and P. Varona, "Generalized image charge method to calculate electrostatic magnitudes at the nanoscale powered by artificial neural networks ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1145-1155, 2010.
doi:10.1163/156939310791586160 Google Scholar
26. Guo, L. and L. Parsa, "Geometry optimization of IPM machines using orthogonal experimental design method and artificial neural network ," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 901-912, 2011.
doi:10.1163/156939311795254028 Google Scholar
27. Carro Ceballos, P. L., J. De Mingo Sanz, and P. G. Dúcar, "Radiation pattern synthesis for maximum mean effective gain with spherical wave expansions and particle swarm techniques ," Progress In Electromagnetics Research, Vol. 103, 355-370, 2010.
doi:10.2528/PIER10031808 Google Scholar
28. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO ," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105 Google Scholar
29. Wang, W.-B., Q. Feng, and D. Liu, "Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 115, 173-189, 2011. Google Scholar
30. Li, W.-T., Y.-Q. Hei, and X.-W. Shi, "Pattern synthesis of conformal arrays by a modified particle swarm optimization," Progress In Electromagnetics Research, Vol. 117, 237-252, 2011. Google Scholar
31. Liu, D., Q. Feng, W.-B.Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502 Google Scholar
32. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
doi:10.2528/PIER11052303 Google Scholar
33. Lin, D.-B., F.-N. Wu, W. S. Liu, C. K. Wang, and H.-Y. Shih, "Crosstalk and discontinuities reduction on multi-module memory bus by particle swarm optimization," Progress In Electromagnetics Research, Vol. 121, 53-74, 2011.
doi:10.2528/PIER11080302 Google Scholar
34. Kennedy, J. and R. C. Eberhart, "A discrete binary version of the particle swarm algorithm," Proc. World Multiconference on Systemics, Cybernetics and Informatics, 4104-4109, 1997. Google Scholar
35. Afshinmanesh, F., A. Marandi, and M. Shahabadi, "Design of a single-feed dual-band dual-polarized printed microstrip antenna using a Boolean particle swarm optimization ," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 1845-1852, July 2008.
doi:10.1109/TAP.2008.924684 Google Scholar
36. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interporlated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904 Google Scholar
37. Park, G. M., H. G. Lee, and S. Y. Hong, "Doa resolution enhancement of coherent signals via spatial averaging of virtually expanded arrays ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 61-70, 2010.
doi:10.1163/156939310790322127 Google Scholar
38. Lui, H. S. and H. T. Hui, "Effective mutual coupling compensation for direction-of-arrival estimations using a new, accurate determination method for the receiving mutual impedance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 271-281, 2010.
doi:10.1163/156939310790735598 Google Scholar
39. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011. Google Scholar
40. Bencheikh, M. L. and Y. Wang, "Combined esprit-rootmusic for DOA-dod estimation in polarimetric bistatic MIMO radar," Progress In Electromagnetics Research Letters, Vol. 22, 109-117, 2011. Google Scholar
41. Neural Network ToolboxTM User's Guide R2010a, MATLAB, The MathWorks, Inc.. Google Scholar