1. Zhao, W.-J., J. L.-W. Li, and K. Xiao, "Analysis of radiation characteristics of conformal microstrip arrays using adaptive integral method," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1176-1181, 2012.
doi:10.1109/TAP.2011.2173135 Google Scholar
2. Li, J. L.-W., Y.-N. Li, T.-S. Yeo, J. R. Mosig, and O. J. F. Martin, "Addendum: `A broadband and high-gain metamaterial microstrip antenna' [Appl. Phys. Lett. 96, 164101(2010)]," Applied Physics Letters, Vol. 99, 159901, Nov. 2011. Google Scholar
3. Li, L.-W., Y.-N. Li, T.-S. Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Applied Physics Letters, Vol. 96, No. 6, 164101, Apr. 2010.
doi:10.1063/1.3396984 Google Scholar
4. Zhao, W.-J., L.-W. Li, and K. Xiao, "Analysis of electromagnetic scattering and radiation from finite microstrip structures using an EFIE-PMCHWT formulation ," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2468-2473, Jul. 2010.
doi:10.1109/TAP.2010.2048867 Google Scholar
5. Yuan, N., T. S. Yeo, X. C. Nie, Y. B. Gan, and L.-W. Li, "Analysis of probe-fed conformal microstrip antennas on finite ground plane and substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 554-563, Feb. 2006.
doi:10.1109/TAP.2005.863115 Google Scholar
6. Yin, W.-Y., X.-T. Dong, J. F. Mao, and L.-W. Li, "Average power handling capability of finite-ground thin-film microstrip lines over ultra-wide frequency ranges," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 715-717, Oct. 2005.
doi:10.1109/LMWC.2005.856829 Google Scholar
7. Gao, S.-C., L.-W. Li, T.-S. Yeo, and M.-S. Leong, "A broad-band dual-polarized microstrip patch antenna with aperture coupling," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 4, 898-900, Apr. 2003.
doi:10.1109/TAP.2003.811080 Google Scholar
8. Yuan, N., T.-S. Yeo, X. C. Nie, and L.-W. Li, "A fast analysis of scattering and radiation of large microstrip antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2218-2226, Sep. 2003. A correction is also made here (appearing in IEEE T-AP, Vol. 52, No. 7, 1921, Jul. 2004).
doi:10.1109/TAP.2003.811082 Google Scholar
9. Liu, Z. F., P.-S. Kooi, L.-W. Li, M.-S. Leong, and T.-S. Yeo, "A method for designing broadband microstrip antennas in multilayered planar structures ," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 9, 1416-1420, Sep. 1999.
doi:10.1109/8.793321 Google Scholar
10. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, Inc., 1997.
11. Moradi, K. and S. Nikmehr, "A dual-band dual-polarized microstrip array antenna for base stations," Progress In Electromagnetics Research, Vol. 123, 527-541, 2012.
doi:10.2528/PIER11111610 Google Scholar
12. Monava, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305 Google Scholar
13. Pergol, M. and W. Zieniutycz, "Rectangular microstrip resonator illuminated by normal-incident plane wave," Progress In Electromagnetics Research, Vol. 120, 83-97, 2011. Google Scholar
14. Rezaee, P., M. Tayarani, and R. Knöchel, "Active learning method for the determination of coupling factor and external Q in microstrip filter design," Progress In Electromagnetics Research, Vol. 120, 459-479, 2011. Google Scholar
15. Tiang, J.-J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011. Google Scholar
16. Asimakis, N. P., I. S. Karanasiou, and N. K. Uzunoglu, "Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna," Progress In Electromagnetics Research, Vol. 117, 83-101, 2011. Google Scholar
17. Peláe-Pérez, A. M., P. Almorox-Gonzalez, J. I. Alonso, and J. González-Martín, "Ultra-broadband directional couplers using microstrip with dielectric overlay in millimeter-wave band," Progress In Electromagnetics Research, Vol. 117, 495-509, 2011. Google Scholar
18. Shakelford, A., K. F. Lee, D. Chatterjee, Y. X. Guo, K. M. Luk, and R. Chair, "Small-size wide-bandwidth microstrip patch antennas," Digest of 2001 IEEE AP-S International Symposium on Antennas and Propagation, Vol. 1, 86-89, Jul. 2001. Google Scholar
19. Liu, T.-H. and W. X. Zhang, "Compound techniques for broadening the bandwidth of microstrip patch antenna," Proceedings of 1997 Asia Paci¯c Microwave Conference, Vol. 1, 241-244, Dec. 1997.
20. Slavova, A., A. Abdel Rahman, and A. S. Omar, "Broadband bandwidth enhancement of an Aperture coupled microstrip patch antenna," Digest of 2004 IEEE AP-S International Symposium on Antennas and Propagation, Vol. 4, 3737-3740, Jun. 2004. Google Scholar
21. Yuan, T., J.-Y. Li, L.-W. Li, L. Zhang, and M.-S. Leong, "Improvement of microstrip antenna performance using two triangular structures," Digest of 2005 IEEE AP-S International Symposium on Antennas and Propagation, Vol. 1A, 301-304, Jul. 3-8, 2005. Google Scholar
22. Li, J. Y., Z.-Z. Oo, and L.-W. Li, "Improvement of characteristics of microstrip antennas using unbalanced structures," IEEE Antennas and Wireless Propagat. Lett., Vol. 1, 71-73, 2002. Google Scholar
23. Yablonvitch, E. and J. Opt. Soc. Am. B, "Photonic band-gap structures,", Vol. 10, No. 2, 283-295, Feb. 1993. Google Scholar
24. Yang, F. and R.-S. Y, "Applications of electromagnetic band-gap (EBG) structures in microwave antenna designs," Microwave and Millimeter Wave Technology, 528-531, Aug. 2002. Google Scholar
25. Brown, E. R., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B, Vol. 10, 404-407, Feb. 1993.
doi:10.1364/JOSAB.10.000404 Google Scholar
26. Thevenot, M., M. S. Denis, A. Reincix, and B. Jecko, "Design of a new photonic cover to increase antenna directivity," Microwave Opt. Technol. Lett., Vol. 22, No. 2, 136-139, Jul. 1999.
doi:10.1002/(SICI)1098-2760(19990720)22:2<136::AID-MOP17>3.0.CO;2-K Google Scholar
27. Yang, L., M. Y. Fan, F. L. Chen, J. Z. She, and Z. H. Feng, "A novel compact electromagnetic bandgap structure and its applications for microwave circuits," IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, Jan. 2005.
doi:10.1109/TMTT.2004.839322 Google Scholar
28. Yu, A. and X. X. Zhang, "A novel 2-D electromagnetic band-gap structure and its application in micro-strip antenna arrays," Microwave and Millimeter Wave Technology, 580-583, Aug. 2002. Google Scholar
29. Choi, J. and M. Swaminathan, "Analysis of alternating impedance electromagnetic bandgap (Al-EBG) structure by transmission line network method ," Proceedings of 2005 Asia Pacific Microwave Conference, Vol. 3, 2005.
30. Yang, L., M. Y. Fan, and Z. H. Feng, "A spiral electromagnetic bandgap (EBG) structure and its application in microstrip antenna arrays ," Proceedings of 2005 Asia Pacific Microwave Conference, Vol. 3, 2005.
31. Xu, D. X., B. L. Ooi, and G. Zhao, "A new triple-band slot antenna with EBG feed," Proceeding of Microwave, Antenna, Propagation and EMC Technologies for Wireless Communication, Vol. 1, 41-44, Aug. 2005. Google Scholar
32. Manik, G., T. Yuan, C.-W. Qiu, L.-W. Li, and K. Takei, "Bandwidth increment of microstrip patch antenna array with opposite double-e ebg structure for different feed positions," Proceedings of the 11th International Symposium on Antennas and Propagation, Singapore, Nov. 1-4, 2006.
33. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, 1980.