1. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 8, 1160-1162, 2002.
doi:10.1109/TAP.2002.801360 Google Scholar
2. Kula, J. S., D. Psychoudakis, W. J. Liao, C. C. Chen,J. L. Volakis, and J. W. Halloran, "Patch-antenna miniaturization using recently available ceramic substrates," IEEE Antennas and Propagation Magazine, Vol. 48, No. 6, 13-20, 2006.
doi:10.1109/MAP.2006.323335 Google Scholar
3. Volakis, J. L., Antenna Engineering Handbook, 4th Edtion, Vol. 7, 3-4, The McGraw Hill Companies, 2007.
4. Jackson, D. and N. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 9, 976-987, 1985.
doi:10.1109/TAP.1985.1143709 Google Scholar
5. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135 Google Scholar
6. Rainville, P. J. and F. J. Harackiewicz, "Magnetic tuning of a microstrip patch antenna fabricated on a ferrite fim," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 12, 483-485, 1992.
doi:10.1109/75.173402 Google Scholar
7. Brown, A. D., J. L. Volakis, L. C. Kempel, and Y. Botros, "Patch antennas on ferromagnetic substrates," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 1, 26-32, 1999.
doi:10.1109/8.752980 Google Scholar
8. Do, T. B. and J. W. Halloran, "Fabrication of polymer magnetics," IEEE Antennas and Propagation Society International Symposium, 1709-1712, 2007. Google Scholar
9. Volakis, J. L. and C. Chen, "Miniaturization and materials in antenna design," IDGA's Military Antennas 2007 Conference, Washington DC, Sep.2007. Google Scholar
10. Chikazumi, S., Physics of Magnetism, Krieger Publishing Company, 1978.
11. Sun, N. X., J. W. Wang, A. Daigle, C. Pettiford, H. Mosallaei, and and C. Vittoria, "Electronically tunable magnetic patch antennas with metal magnetic films," Electronics Letters, Vol. 43, No. 8, 434-436, 2007.
doi:10.1049/el:20070560 Google Scholar
12. Yang, G. M., A. Daigle, M. Liu, O. Obi, S. Stoute,K. Naishadham, and N. X. Sun, "Planar circular loop antennas with self-biased magnetic film loading," IEEE Antennas and Propagation Society International Symposium, AP-S 2008,1-4, 2008. Google Scholar
13. Yang, G. M., X. Xing, A. Daigle, M. Liu, O. Obi, S. Stoute,K. Naishadham, and N. X. Sun, "Tunable miniaturized patch antennas with self-biased multilayer magnetic films," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2190-2192, 2009.
doi:10.1109/TAP.2009.2021972 Google Scholar
14. Rao, C. R. K. and D. C. Trivedi, "Biphasic synthesis of fatty acids stabilized silver nanoparticles: Role of experimental conditions on particle size," Mater. Chem. Phys., Vol. 99, No. 2-3, 354-360, 2006.
doi:10.1016/j.matchemphys.2005.11.004 Google Scholar
15. Bell, N. S., M. E. Schendel, and M. Piech, "Rheological properties of nanopowder alumina coated with adsorbed fatty acids," J.Colloid Interface Sci., Vol. 287, No. 1, 94-106, 2005.
doi:10.1016/j.jcis.2005.01.113 Google Scholar
16. Lan, Q., C. Liu, F. Yang, S. Liu, J. Xu, and D. Sun, "Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive pickering emulsions," J. Colloid Interface Sci., Vol. 310, No. 1, 260-269, 2007.
doi:10.1016/j.jcis.2007.01.081 Google Scholar
17. Sailer, R. A. and M. D. Soucek, "Investigation of cobalt drier retardation," European Polymer Journal, Vol. 36, No. 4, 803-811, 2000.
doi:10.1016/S0014-3057(99)00122-6 Google Scholar
18. Yang, T., R. N. C. Brown, L. C. Kempel, and P. Kofinas, "Surfactant-modified nickel zinc iron oxide/polymer nanocomposites for radio frequency applications," Journal of Nanoparticle Research, Vol. 12, No. 8, 2967-2978, 2010.
doi:10.1007/s11051-010-9887-4 Google Scholar
19. Moser, A., K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe,Y. Ikeda, S. Sun, and E. E. Fullerton, "Magnetic recording:Advancing into the future," J. Phys. D, Vol. 35, No. 19, R157-R167, 2002.
doi:10.1088/0022-3727/35/19/201 Google Scholar
20. Bigioni, T. P., X. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and and H. M. Jaeger, "Kinetically driven self assembly of highly ordered nanoparticle monolayers," Nature Materials, Vol. 5, No. 4, 265-270, 2006.
doi:10.1038/nmat1611 Google Scholar
21. Rudenkiy, S., M. Frerichs, F. Voigts, W. Maus-Friedrichs,V. Kempter, R. Brinkmann, N. Matoussevitch, W. Brijoux,H. BÄonnemann, N. Palina, and H. Modrow, "Study of the structure and stability of cobalt nanoparticles for ferrofluidic applications," Applied Organometallic Chemistry, Vol. 18, No. 10, 553-560, 2004.
doi:10.1002/aoc.760 Google Scholar
22. Mornet, S., S. Vasseur, F. Grasset, and E. Duguet, "Magnetic nanoparticle design for medical diagnosis and therapy," Journal of Materials Chemistry, Vol. 14, No. 14, 2161-2175, 2004.
doi:10.1039/b402025a Google Scholar
23. Neuberger, T., B. SchÄopf, H. Hofmann, M. Hofmann, and B. Von Rechenberg, "Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system," J. Magn. Mater., Vol. 293, No. 1, 483-496, 2005.
doi:10.1016/j.jmmm.2005.01.064 Google Scholar
24. Hu, A., G. T. Yee, and W. Lin, "Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones," J. Am. Chem. Soc., Vol. 127, No. 36, 12486-12487, 2005.
doi:10.1021/ja053881o Google Scholar
25. Pohjalainen, E., M. Pohjakallio, C. Johans, K. Kontturi, J. V. I. Timonen, O. Ikkala, R. H. A. Ras, T. Viitala, M. T. Heino, and and E. T. SeppÄalÄa, "Cobalt nanoparticle langmuir-schaefer films on ethylene glycol subphase," Langmuir, Vol. 26, No. 17, 13937-13943, 2010.
doi:10.1021/la101630q Google Scholar
26. Aleksandrovic, V., D. Greshnykh, I. Randjelovic, A. FrÄomsdorf,A. Kornowski, S. V. Roth, C. Klinke, and H. Weller, "Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the langmuir-blodgett technique," ACS Nano, Vol. 2, No. 6, 1123-1130, 2008.
doi:10.1021/nn800147a Google Scholar
27. Ago, H., J. Qi, K. Tsukagoshi, K. Murata, S. Ohshima, Y. Aoyagi, and and M. Yumura, "Catalytic growth of carbon nanotubes and their patterning based on ink-jet and lithographic techniques," J. Electroanal. Chem., Vol. 559, 25-30, 2003. Google Scholar
28. Nelo, M., A. K. Sowpati, V. K. Palukuru, J. Juuti, and H. Jantunen, "Formulation of screen printable cobalt nanoparticle ink for high frequency applications," Progress In Electromagnetics Research, Vol. 110, 253-266, 2010.
doi:10.2528/PIER10102101 Google Scholar
29. Xanthos, M., Functional Fillers for Plastics, 2nd edtion, 119,Viley-Verlag GMBH, 2010.
30. Wu, Y., Z.-X. Tang, Y. Xu, and B. Zhang, "Measure the complex permeability of ferromagnetic thin films: Comparison shorted microstrip method with microstrip transmission method," Progress In Electromagnetics Research Letters, Vol. 11, 173-181, 2009.
doi:10.2528/PIERL09082004 Google Scholar
31. Liu, Y., L. Chen, C. Y. Tan, H. J. Liu, and C. K. Ong, "Broadband complex permeability characterization of magnetic thin films using shorted microstrip transmission-line perturbation," Rev.Sci. Instrum., Vol. 76, No. 6, 2005.
doi:10.1063/1.1935429 Google Scholar
32. Wu, Y., Z. Tang, Y. Xu, B. Zhang, and X. He, "Measuring complex permeability of ferromagnetic thin film up to 10 GHz," Progress In Electromagnetics Research Letters, Vol. 9, 139-145, 2009.
doi:10.2528/PIERL09061201 Google Scholar
33. Wu, Y., Z. Tang, Y. Xu, B. Zhang, and H. Xi, "A new shorted microstrip method to determine the complex permeability of thin films," IEEE Transactions on Magnetics, Vol. 46, No. 3, 886-888, 2010.
doi:10.1109/TMAG.2009.2030886 Google Scholar
34. Iversen, P. O., P. Garreau, and D. Burrell, "Real-time spherical near-field handset antenna measurements," IEEE Antennas and Propagation Magazine, Vol. 43, No. 3, 90-94, 2001.
doi:10.1109/74.934906 Google Scholar
35. Volakis, J. L., C. C. Chen, and K. Fujimoto, Small Antennas Miniaturization Techniques & Applications, 160, The McGraw.Hill Companies,2010.