Vol. 128
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-05-27
A Hybrid Implicit-Explicit Spectral FDTD Scheme for Oblique Incidence Problems on Periodic Structures
By
Progress In Electromagnetics Research, Vol. 128, 153-170, 2012
Abstract
This paper combines a hybrid implicit-explicit (HIE) method with spectral finite-difference time-domain (SFDTD) method for solving periodic structures at oblique incidence, resulting in a HIE-SFDTD method. The new method has the advantages of both HIE-FDTD and SFDTD methods, not only making the stability condition weaker, but also solving the oblique incident wave on periodic structures. Because the stability condition is determined only by two space discretizations in this method, it is extremely useful for periodic problems with very fine structures in one direction. The method replaces the conventional single-angle incident wave with a constant transverse wave-number (CTW) wave, so the fields have no delay in the transverse plane, as a result, the periodic boundary condition (PBC) can be implemented easily for both normal and oblique incident waves. Compared with the ADI-SFDTD method it only needs to solve two untridiagonal matrices when the PBC is applied to, other four equations can be updated directly, while four untridiagonal matrices, two tridiagonal matrices, and six explicit equations should be solved in the ADI-SFDTD method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed algorithm. Results show the new algorithm has better accuracy and higher efficiency than that of the ADI-SFDTD method, especially for large time step sizes. The CPU running time for this method can be reduced to about 45% of the ADI-SFDTD method.
Citation
Yunfei Mao Bin Chen Hao-Quan Liu Jing-Long Xia Ji-Zhen Tang , "A Hybrid Implicit-Explicit Spectral FDTD Scheme for Oblique Incidence Problems on Periodic Structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.
doi:10.2528/PIER12032306
http://www.jpier.org/PIER/pier.php?paper=12032306
References

1. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

2. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with subarray divided technique and interpolated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

3. Li, R., L. Xu, X. W. Shi, L. Chen, and C. Y. Cui, "Two-dimensional NC-music DOA estimation algorithm with a conformal cylindrical antenna array," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 805-818, 2011.
doi:10.1163/156939311794827249

4. Kshetrimayum, R. S. and L. Zhu, "Guided-wave characteristics of waveguide based periodic structures loaded with various FSS strip layers," IEEE Transactions on Antennas and Propagation, Vol. 53, 120-124, 2005.
doi:10.1109/TAP.2004.840527

5. Dardenne, X. and C. Craeye, "Method of Moments simulation of infinitely periodic structures combining metal with connected dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 56, 2372-2380, 2008.
doi:10.1109/TAP.2008.926779

6. Petersson, L. E. R. and J.-M. Jin, "A two-dimensional time-domain finite element formulation for periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 53, 1480-1488, 2005.
doi:10.1109/TAP.2005.844405

7. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.

8. Xiong, R., B. Chen, Y.-F. Mao, and Y. Yi, "The capacitance thin-slot formalism revisited: An alternative expression for the thin-slot penetration," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 4, 446-458, 2012.

9. Cai, Z.-Y., B. Chen, Q. Yin, and R. Xiong, "The WLP-FDTD method for periodic structures with oblique incident wave," IEEE Transactions on Antennas and Propagation, Vol. 59, 3780-3785, 2011.
doi:10.1109/TAP.2011.2163791

10. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li,and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

11. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and W. F. W. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic fields at intermediate distances from lightning channel," Progress In Electromagnetics Research, Vol. 110, 329-352, 2010.
doi:10.2528/PIER10080801

12. Chen, H.-L., B. Chen, Y. Yi, and D.-G. Fang, "Unconditionally stable ADI-BOR-FDTD algorithm for the analysis of rotationally symmetric geometries," IEEE Microw. Wireless Compon. Lett., Vol. 17, 304-306, 2007.
doi:10.1109/LMWC.2007.892991

13. Yi, Y., B. Chen, W.-X. Sheng, and Y.-L. Pei, "A memory-effcient formulation of the unconditionally stable FDTD method for solving Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 55, 3729-3722, 2007.
doi:10.1109/TAP.2007.910499

14. Duan, Y.-T., B. Chen, and Y. Yi, "Effcient implementation for the unconditionally stable 2-D WLP-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 19, 677-679, 2009.
doi:10.1109/LMWC.2009.2031995

15. Xiao, S.-Q., Z. H. Shao, and B.-Z. Wang, "Application of the improved matrix type FDTD method for active antenna analysis," Progress In Electromagnetics Research, Vol. 100, 245-263, 2010.
doi:10.2528/PIER09112204

16. Taflove, A. and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method, 2nd Edition, Artech House, Boston, MA, 2000.

17. Wang, S., J. Chen, and P. Ruchhoeft, "An ADI-FDTD method for periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 53, 2343-2346, 2005.
doi:10.1109/TAP.2005.850763

18. Singh, G., E.-L. Tan, and Z.-N. Chen, "Effcient complex envelope ADI-FDTD method for the analysis of anisotropic photonic crystals," IEEE Photonics Technology Letters, Vol. 23, 801-803, 2011.
doi:10.1109/LPT.2011.2138123

19. Mao, Y.-F., B. Chen, H.-L. Chen, and Q. Wu, "Unconditionally stable SFDTD algorithm for solving oblique incident wave on periodic structures," IEEE Microw. Wireless Compon. Lett., Vol. 19, 257-259, 2009.

20. Shibayama, J., R. Ando, J. Yamauchi, and H. Nakano, "An LODFDTD method for the analysis of periodic structures at normal incidence," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 890-893, 2009.
doi:10.1109/LAWP.2009.2028448

21. Wakabayashi, Y., J. Shibayama, J. Yamauchi, and H. Nakano, "A locally one-dimensional finite difference time domain method for the analysis of a periodic structure at oblique incidence," Radio Science, Vol. 46, 1-9, 2011.

22. Shibayama, J., R. Ando, J. Yamauchi, and H. Nakano, "Analysis of a photonic bandgap structure using a periodic LOD-FDTD method," Microwave Conference, APMC, 56-59, 2009.
doi:10.1109/APMC.2009.5385497

23. Harms, P., R. Mittra, and K. Wai, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Transactions on Antennas and Propagation, Vol. 42, 1317-1324, 1994.
doi:10.1109/8.318653

24. Amjadi, S. M. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
doi:10.2528/PIERB07122402

25. Belkhir, A., O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, "Implementation of dispersion models in the splitfield finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence," Phys. Rev. E, Vol. 81, 046705, 2010.

26. Shahmansouri, A. and B. Rashidian, "GPU implementation of split-field finite-difference time-domain method for Drude-Lorentz dispersive media," Progress In Electromagnetics Research, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505

27. Amir, A. and R.-S. Yahya, "Spectral FDTD: A novel technique for the analysis of oblique incident plane wave on periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 54, 1818-1825, 2006.

28. Yang, F., A. Elsherbeni, and J. Chen, "A hybrid spectral-FDTD/ARMA method for periodic structure analysis," IEEE Antennas and Propagation Society International Symposium, 3720-3723, 2007.

29. Huang, B. K., G. Wang, and Y. S. Jiang, "A hybrid implicit-explicit FDTD scheme with weakly conditional stability," Microwave and Optical Tech. Lett., Vol. 39, No. 2, 97-101, 2003.
doi:10.1002/mop.11138

30. Chen, J. and J. G. Wang, "A 3D hybrid implicit-explicit FDTD scheme with weakly conditional stability," Microwave and Optical Tech. Lett.,, Vol. 48, No. 11, 2291-2294, 2006.
doi:10.1002/mop.21898

31. Thomas, J.-W., Numerical Partial Differential Equations: Finite Difference Methods, Springer Verlag, Berlin, Germany, 1995.

32. Zhao, A.-P., "Two special notes on the implementation of the unconditionally stable ADI-FDTD method," Microwave and Optical Tech. Lett., Vol. 33, No. 4, 273-277, 2002.
doi:10.1002/mop.10295

33. Yu, Y. and J. J. Simpson, "An E-J Collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 469-478, February 2010.
doi:10.1109/TAP.2009.2037706

34. Hu, W. and S. A. Cummer, "An FDTD model for low and high altitude lightning-generated EM fields," IEEE Transactions on Antennas and Propagation, Vol. 54, 1513-1522, May 2006.
doi:10.1109/TAP.2006.874336

35. Jung, K.-Y., F. L. Teixeira, and R. Lee, "Complex envelop PML-ADI-FDTD method for lossy anisotropic dielectrics," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 643-646, 2007.
doi:10.1109/LAWP.2007.913324