Vol. 128
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-05-18
Multi-Refraction with Same Polarization State in Two Dimensional Triangular Photonic Crystals
By
Progress In Electromagnetics Research, Vol. 128, 91-103, 2012
Abstract
Multi-refraction effects with one polarization in a two-dimensional triangular photonic crystal (PhC) were systematically studied by theoretical analysis and numerical simulation. The more complicated refraction behaviors can be excited in the higher band regions based on the intricate undulation of one band or the overlap of different bands. A novel non-handedness effect is proposed for the first time with group velocity perpendicular to phase velocity. Furthermore, triple refraction phenomena and special collimation effects of symmetrical positive-negative refraction with the loose incident conditions have been found in different band regions of this PhC. These unique features will provide us with more understanding of electromagnetic wave propagation in PhCs and give important guideline for the design of new type optical device.
Citation
Guoyan Dong, Ji Zhou, Xiulun Yang, and Xiangfeng Meng, "Multi-Refraction with Same Polarization State in Two Dimensional Triangular Photonic Crystals," Progress In Electromagnetics Research, Vol. 128, 91-103, 2012.
doi:10.2528/PIER12040306
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.        Google Scholar

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.        Google Scholar

3. Wu, C. J., Y. C. Hsieh, and H. T. Hsu, "Tunable photonic band gap in a doped semiconductor photonic crystal in near infrared region," Progress In Electromagnetics Research, Vol. 114, 271-283, 2011.        Google Scholar

4. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.        Google Scholar

5. Hsu, H. T, T. W. Chang, T. J. Yang, B. H. Chu, and C. J. Wu, "Analysis of wave properties in photonic crystal narrowband filters with left-handed defect," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2285-2298, 2010.
doi:10.1163/156939310793699073        Google Scholar

6. Li, H. and X. Yang, "Larger absolute band gaps in two-dimensional photonic crystals fabricated by a three-order-effect method," Progress In Electromagnetics Research, Vol. 108, 385-400, 2010.
doi:10.2528/PIER10072505        Google Scholar

7. Hung, H. C., C. J. Wu, T. J. Yang, and S. J. Chang, "Analysis of tunable multiple-filtering property in a photonic crystal containing strongly extrinsic semiconductor," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 2089-2099, 2011.
doi:10.1163/156939311798072009        Google Scholar

8. Lu, H, X. M. Liu, R. Zhou, D. Mao, and Y. Gong, "Tunable and robust reflection-free waveguides based on a gyromagnetic photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1752-1761, 2011.
doi:10.1163/156939311797164882        Google Scholar

9. Dai, X., Y. Xiang, and S. Wen, "Broad Omnidirectional Reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.        Google Scholar

10. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.
doi:10.2528/PIERB08042302        Google Scholar

11. Liu, S. H. and L. X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.        Google Scholar

12. Navarro-Cia, M., M. Beruete, F. J. Falcone, M. Sorolla Ayza, and and I. Campillo, "Polarization-tunable negative or positive refraction in self-complementariness-based extraordinary transmission prism," Progress In Electromagnetics Research, Vol. 103, 101-114, 2010.
doi:10.2528/PIER10030108        Google Scholar

13. Martíez, A., H. Míguez, A. Griol, and J. Martí, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B, Vol. 69, 165119, 2004.        Google Scholar

14. Ren, K., Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, "Three-dimensional light focusing in inverse opal photonic crystals," Phys. Rev. B, Vol. 75, 115108,2007.        Google Scholar

15. Lu, M. H., C. Zhang, L. Feng, J. Zhao, Y. F. Chen, Y. W. Mao,J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Negative birefraction of acoustic waves in a sonic crystal," Nature Material, Vol. 6, 744-748, 2007.        Google Scholar

16. Ruan, Z. and S. He, "Open cavity formed by a photonic crystal with negative effective index of refraction," Opt. Lett., Vol. 30, 2308-2310, 2005.
doi:10.1364/OL.30.002308        Google Scholar

17. Xiong, C., B. Zhang, X. Kang, T. Dai, and G. Zhang, "Diffracted transmission effects of GaN and polymer two-dimensional square-lattice photonic crystals," Opt. Express, Vol. 17, 23684-23689, 2009.
doi:10.1364/OE.17.023684        Google Scholar

18. Balestreri, A., L. Andreani, and M. Agio, "Optical properties and diffraction effects in opal photonic crystals," Phys. Rev. E, Vol. 74, 036603, 2006.        Google Scholar

19. Kim, A., K. B. Chung, and J. W. Wu, "Control of self-collimated Bloch waves by partially flat equifrequency contours in photonic crystals," Appl. Phys. Lett., Vol. 89, 251120, 2006.        Google Scholar

20. Wu, L. J., M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. de La Rue, "Planar photonic crystal polarization splitter," Opt. Lett., Vol. 29, 1620, 2004.        Google Scholar

21. Luo, Y., W. Zhang, Y. Huang, J. Zhao, and J. Peng, "Wide-angle beam splitting by use of positive-negative refraction in photonic crystals," Opt. Lett., Vol. 29, 2920-2922, 2004.
doi:10.1364/OL.29.002920        Google Scholar

22. Kang, X., G.-J. Li, and Y.-P. Li, "Positive-negative refraction effect based on overlapping bands in a two-dimensional photonic crystal," J. Opt. Soc. Am. B, Vol. 26, 010060, 2009.        Google Scholar

23. Gajic, R., R. Meisels, F. Kuchar, and K. Hingerl, "Refraction and rightness in photonic crystals," Opt. Express, Vol. 13, 8596-8605, 2005.
doi:10.1364/OPEX.13.008596        Google Scholar

24. Shi, Y., "A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.
doi:10.2528/PIER10040402        Google Scholar

25. Li, J., F. Q. Yang, and J. F. Dong, "Design and simulation of L-shaped chiral negative index structure," Progress In Electromagnetics Research,, Vol. 116, 395-408, 2011.        Google Scholar

26. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173        Google Scholar

27. Kinto-Ramírez, H., M. A. Palomino-Ovando, and F. Ramos-Mendieta, "Photonic modes in dispersive and lossy superlattices containing negative-index materials," Progress In Electromagnetics Research B, Vol. 35, 133-149, 2011.
doi:10.2528/PIERB11062911        Google Scholar

28. Zhao, Y., F. Chen, H. Chen, N. Li, Q. Shen, and L. Zhang, "The microstructure design optimization of negative index metamaterials using genetic algorithm," Progress In Electromagnetics Research Letters, Vol. 22, 95-108, 2011.        Google Scholar

29. Dong, G. Y., J. Zhou, X. L. Yang, and L. Z. Cai, "Dual-negative refraction in photonic crystals with hexagonal lattices," Opt. Express, Vol. 19, 12119,2011.        Google Scholar

30. Dong, G. Y., X. L. Yang, and L. Z. Cai, "Anomalous refractive effects in honeycomb lattice photonic crystals formed by holographic lithography," Opt. Express, Vol. 18, 16302-16308, 2010.
doi:10.1364/OE.18.016302        Google Scholar

31. Leminger, O., "Wave-vector diagrams for two-dimensional photonic crystals," Opt. Quantum Electro., Vol. 34, 435-443, 2002.        Google Scholar

32. Yu, X. and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett., Vol. 83, 3251-3253, 2003.
doi:10.1063/1.1621736        Google Scholar

33. Liu, L., S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Performance improvement of phase modulation with interferometric detection through low-biasing," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 123-132, 2010.
doi:10.1163/156939310790322055        Google Scholar

34. Xu, O., "Collimation lens design using Al-Ga technique for Gaussian radiators with arbitrary aperture field distribution," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 743-754, 2011.
doi:10.1163/156939311794827113        Google Scholar