1. Halas, N. J., S. Lal, W.-S. Chang, S. Link, and P. Nordlander, "Plasmons in strongly coupled metallic nanostructures," Chem. Rev., Vol. 111, No. 6, 3913-3961, 2011.
doi:10.1021/cr200061k Google Scholar
2. Mortazavi, D., A. Z. Kouzani, A. Kaynak, and W. Duan, "Developing LSPR design guidelines," Progress In Electromagnetics Research, Vol. 126, 203-235, 2012.
doi:10.2528/PIER12011810 Google Scholar
3. Lal, S., S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics, Vol. 1, No. 11, 641-648, 2007.
doi:10.1038/nphoton.2007.223 Google Scholar
4. Brandl, D. W., N. A. Mirin, and P. Nordlander, "Plasmon modes of nanosphere trimers and quadrumers," J. Phys. Chem. B, Vol. 110, No. 25, 12302-12310, 2006.
doi:10.1021/jp0613485 Google Scholar
5. Chau, Y.-F., Z.-H. Jiang, H.-Y. Li, G.-M. Lin, F.-L. Wu, and W.-H. Lin, "Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains," Progress In Electromagnetics Research B, Vol. 28, 183-199, 2011. Google Scholar
6. Renger, J., S. Grafström, L. Eng, and V. Deckert, "Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface," J. Opt. Soc. Am. A, Vol. 21, No. 7, 1362-1367, 2004.
doi:10.1364/JOSAA.21.001362 Google Scholar
7. Mark, W. K. and J. H. Naomi, "Nanoshells to nanoeggs to nanocups: Optical properties of reduced symmetry coreshell nanoparticles beyond the quasistatic limit," New J. Phys., Vol. 10, No. 10, 105006, 2008.
doi:10.1088/1367-2630/10/10/105006 Google Scholar
8. Hu, Y., S. Noelck, and R. Drezek, "Symmetry breaking in gold-silica-gold multilayer nanoshells," ACS Nano, Vol. 4, No. 3, 1521-1528, 2010.
doi:10.1021/nn901743m Google Scholar
9. Hao, F., P. Nordlander, Y. Sonnefraud, P. Dorpe, and S. Maier, "Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing ," ACS Nano, Vol. 3, No. 3, 643-652, 2009.
doi:10.1021/nn900012r Google Scholar
10. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garcia De Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett., Vol. 90, No. 5, 057401, 2003.
doi:10.1103/PhysRevLett.90.057401 Google Scholar
11. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603 Google Scholar
12. Raymond Ooi, C. H., "Near-field and particle size effects in coherent raman scattering," Progress In Electromagnetics Research, Vol. 117, 479-494, 2011. Google Scholar
13. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery ," Progress In Electromagnetics Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER11112406 Google Scholar
14. Luo, Z., T. Suyama, X. Xu, and Y. Okuno, "A grating-based plasmon biosensor with high resolution," Progress In Electromagnetics Research, Vol. 118, 527-539, 2011.
doi:10.2528/PIER11060103 Google Scholar
15. Gong, Y., K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER11121903 Google Scholar
16. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
17. Han, L., S. Chen, A. Schulzgen, Y. Zeng, F. Song, J.-G. Tian, and N. Peyghambarian, "Calculation and optimization of electromagnetic resonances and local intensity enhancements for plasmon metamaterials with sub-wavelength double-slots," Progress In Electromagnetics Research, Vol. 113, 161-177, 2011. Google Scholar
18. Rahimi, H., A. Namdar, S. Roshan Entezar, H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303 Google Scholar
19. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of l-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011. Google Scholar
20. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011. Google Scholar
21. Zhang, J. and N. A. Mortensen, "Ultrathin cylindrical cloak," Progress In Electromagnetics Research, Vol. 121, 381-389, 2011.
doi:10.2528/PIER11091205 Google Scholar
22. Larsson, E. M., J. Alegret, M. Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett., Vol. 7, No. 5, 1256-1263, 2007.
doi:10.1021/nl0701612 Google Scholar
23. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, No. 3, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257 Google Scholar
24. Abbasian, K., A. Rostami, and Z. D. Koozehkanani, "All-optical tunable mirror design using electromagnetically induced transparency," Progress In Electromagnetics Research M, Vol. 5, 25-41, 2008.
doi:10.2528/PIERM08072602 Google Scholar
25. Liu, Y., H. Jiang, C. Xue, W. Tan, H. Chen, and Y. Shi, "Fano resonances in a bilayer structure composed of two kinds of dispersive metamaterials," Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011.
doi:10.2528/PIERL11072205 Google Scholar
26. Luk'yanchuk, B., N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater., Vol. 9, No. 9, 707-715, 2010.
doi:10.1038/nmat2810 Google Scholar
27. Papasimakis, N. and N. I. Zheludev, "Metamaterial-induced transparency: Sharp Fano resonances and slow light," Opt. Photonics News, Vol. 20, No. 10, 22-27, 2009.
doi:10.1364/OPN.20.10.000022 Google Scholar
28. Bao, K., N. Mirin, and P. Nordlander, "Fano resonances in planar silver nanosphere clusters," Appl. Phys. A, Vol. 100, No. 2, 333-339, 2010.
doi:10.1007/s00339-010-5861-3 Google Scholar
29. Fan, J., C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, "Self-assembled plasmonic nanoparticle clusters," Science, Vol. 328, No. 5982, 1135, 2010.
doi:10.1126/science.1187949 Google Scholar
30. Liu, S.-D., Z. Yang, R.-P. Liu, and X.-Y. Li, "Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity ," Opt. Express, Vol. 19, No. 16, 15363-15370, 2011.
doi:10.1364/OE.19.015363 Google Scholar
31. Yang, Z.-J., Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, "Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers," Opt. Lett., Vol. 36, No. 9, 1542-1544, 2011.
doi:10.1364/OL.36.001542 Google Scholar
32. Fan, J. A., K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, "Fano-like interference in self-assembled plasmonic quadrumer clusters ," Nano Lett., Vol. 10, No. 11, 4680-4685, 2010.
doi:10.1021/nl1029732 Google Scholar
33. Verellen, N., Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, "Fano resonances in individual coherent plasmonic nanocavities," Nano Lett., Vol. 9, No. 4, 1663-1667, 2009.
doi:10.1021/nl9001876 Google Scholar
34. Liu, H., N. Wang, Y. Liu, Y. Zhao, and X. Wu, "Light transmission properties of double-overlapped annular apertures," Opt. Lett., Vol. 36, No. 3, 385-387, 2011.
doi:10.1364/OL.36.000385 Google Scholar
35. Mukherjee, S., H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, "Fanoshells: Nanoparticles with built-in Fano resonances," Nano Lett., Vol. 10, No. 7, 2694-2701, 2010.
doi:10.1021/nl1016392 Google Scholar
36. Sonnefraud, Y., N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, "Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities," ACS Nano, Vol. 4, No. 3, 1664-1670, 2010.
doi:10.1021/nn901580r Google Scholar
37. Singh, R., I. A. I. Al-Naib, M. Koch, and W. Zhang, "Sharp Fano resonances in THz metamaterials," Opt. Express, Vol. 19, No. 7, 6312-6319, 2011.
doi:10.1364/OE.19.006312 Google Scholar
38. Dong, Z.-G., H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, "Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency ," Opt. Express, Vol. 18, No. 21, 22412-22417, 2010.
doi:10.1364/OE.18.022412 Google Scholar
39. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709 Google Scholar
40. Habteyes, T. G., S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, "Theta-shaped plasmonic nanostructures: Bringing `dark' multipole plasmon resonances into action via conductive coupling ," Nano Lett., Vol. 11, No. 4, 1819-1825, 2011.
doi:10.1021/nl200585b Google Scholar
41. Fang, Z., J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, "Removing a wedge from a metallic nanodisk reveals a Fano resonance ," Nano Lett., Vol. 11, No. 10, 4475-4479, 2011.
doi:10.1021/nl202804y Google Scholar
42. Rahmani, M., B. Luk'yanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. H. Hong, "Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers," Opt. Express, Vol. 19, No. 6, 4949-4956, 2011.
doi:10.1364/OE.19.004949 Google Scholar
43. Rahmani, M., T. Tahmasebi, Y. Lin, B. Luk'yanchuk, T. Liew, and M. Hong, "Influence of plasmon destructive interferences on optical properties of gold planar quadrumers ," Nanotechnology, Vol. 22, 245204, 2011.
doi:10.1088/0957-4484/22/24/245204 Google Scholar
44. Liu, N., L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the drude damping limit," Nat. Mater., Vol. 8, No. 9, 758-762, 2009.
doi:10.1038/nmat2495 Google Scholar
45. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, No. 5644, 419-422, 2003.
doi:10.1126/science.1089171 Google Scholar
46. Wang, H., Y. Wu, B. Lassiter, C. Nehl, J. Hafner, P. Nordlander, and N. Halas, "Symmetry breaking in individual plasmonic nanoparticles," PNAS, Vol. 103, No. 29, 10856, 2006.
doi:10.1073/pnas.0604003103 Google Scholar
47. Bardhan, R., N. K. Grady, T. Ali, and N. J. Halas, "Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties," ACS Nano, Vol. 4, No. 7, 6169-6179, 2010.
doi:10.1021/nn102035q Google Scholar
48. Multiphysics, C., V. 3.5 a, COMSOL AB, Sweden, 2009.
49. Johnson, P. and R. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar
50. Ni, X., Z. Liu, and A. V. Kildishev, PhotonicsDB: Optical constants, 2008, doi: 10254/nanohub-r3692.10.
51. Park , T.-H., Plasmonic properties of metallic nanostructures, Ph.D. Thesis, Rice University, Houstan Texas, 2009.
52. Kang, L., V. Sadaune, and D. Lippens, "Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011. Google Scholar
53. Rahmani, M., B. Lukiyanchuk, T. T. V. Nguyen, T. Tahmasebi, Y. Lin, T. Y. F. Liew, and M. H. Hong, "Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization ," Opt. Mater. Express, Vol. 1, No. 8, 1409-1415, 2011.
doi:10.1364/OME.1.001409 Google Scholar
54. http://www.originlab.com, Accessed 5, May 2012.