1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKHI, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys.Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
3. Shelby, R. A., D. R. Smith, and S. Shultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
4. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604 Google Scholar
5. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011. Google Scholar
6. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
7. Jiang, Z. H., J. A. Bossard, X. Wang, and D. H. Werner, "Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm," J. Appl. Phys., Vol. 109, 013515, 2011. Google Scholar
8. Collin, R. E., Field Theory of Guided Waves, Wiley-IEEE Press, 1990.
doi:10.1109/9780470544648
9. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukolis, "Effective medium theory of left-handed materials," Phys. Rev. Lett., Vol. 93, 107402, 2004. Google Scholar
10. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coeffcients," Phys. Rev. B, Vol. 65, 195104, 2002. Google Scholar
11. Li, Z., K. Aydin, and E. Ozbay, "Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coeffcients," Phys. Rev. E, Vol. 79, 026610, 2009. Google Scholar
12. Smith, D. R., D. C. Vier, T. Koschhy, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617,2005. Google Scholar
13. Chen, X., B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E, Vol. 71, 046610,2005. Google Scholar
14. Hasar, U. C. and J. J. Barroso, "Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 112, 109-124, 2011. Google Scholar
15. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B, Vol. 65, 144440, 2002. Google Scholar
16. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, 2943-2945, 2004.
doi:10.1063/1.1695439 Google Scholar
17. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, 075153, 2011. Google Scholar
18. Lubrowski, G., R. Schuhmann, and T. Weiland, "Extraction of effective metamaterial parameters by parameter fitting of dispersive models," Microw. Opt. Technol. Lett., Vol. 49, 285-288, 2007.
doi:10.1002/mop.22105 Google Scholar
19. Markos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Opt. Express, Vol. 11, 649-661, 2003.
doi:10.1364/OE.11.000649 Google Scholar
20. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
21. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004. Google Scholar
22. Andryieuski, A., R. Malureanu, and A. V. Lavrinenko, "Wave propagation retrieval method for chiral metamaterials," Opt. Express, Vol. 18, No. 15, 15498-15503, 2010.
doi:10.1364/OE.18.015498 Google Scholar
23. Andryieuski, A., C. Menzel, C. Rockstuhl, R. Malureanu,F. Lederer, and A. Lavrinenko, "Homogenization of resonant chiral metamaterials," Phys. Rev. B, Vol. 82, 235107, 2010. Google Scholar
24. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
25. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
26. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar
27. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, 52-57, 1997.
doi:10.1109/22.552032 Google Scholar
28. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242 Google Scholar
29. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1563-1574, 2010.
doi:10.1163/156939310792149759 Google Scholar
30. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 2257-2267, 2009.
doi:10.1109/TMTT.2009.2027160 Google Scholar
31. Hasar, U. C. and Y. Kaya, "Reference-independent microwave method for constitutive parameters determination of liquid materials from measured scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1708-1717, 2011.
doi:10.1163/156939311797164756 Google Scholar
32. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
33. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Trans. Microw. Theory Tech., Vol. 51, 1946-1951, 2003.
doi:10.1109/TMTT.2003.815274 Google Scholar
34. Xia, S., Z. Xu, and X. Wei, "Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency," Rev. Sci. Instrum., Vol. 80, 114703,2009. Google Scholar
35. Buyukozturk, O., T.-Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004 Google Scholar
36. Szabo, Z., G.-H. Park, R. Hedge, and E.-P. Li, "Unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310 Google Scholar
37. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from re°ection and transmitted fields by enforcing causality," IEEE Trans. Microw. Theory Tech., Vol. 55, 2224-2230, 2007.
doi:10.1109/TMTT.2007.906473 Google Scholar
38. Barroso, J. J. and U. C. Hasar, "Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods," Int. J. Infrared Milli. Waves, Vol. 32, 857-866, 2011. Google Scholar
39. Weiland, T., R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, "Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments," J. Appl. Phys., Vol. 90, 5419-5424, 2001.
doi:10.1063/1.1410881 Google Scholar
40. Lubkowski, G., B. Bandlow, R. Schuhmann, and T. Weiland, "Effective modeling of double negative metamaterial macrostructures," IEEE Trans. Microw. Theory Tech., Vol. 57, 1136-1146, 2009.
doi:10.1109/TMTT.2009.2017349 Google Scholar
41. Kline, S. J. and F. A. McClintock, "Describing uncertainties in single-sample experiments," Mech. Eng., Vol. 75, 3, 1953. Google Scholar
42. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability,", Tech. Note 1355, NIST, Boulder, CO, 1992. Google Scholar