1. Nunn, C. J. and G. E. Coxson, "Best-known autocorrelation peak sidelobe levels for binary codes of length 71 to 105," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 1, 392-395, 2008.
doi:10.1109/TAES.2008.4517015 Google Scholar
2. Griep, K. R., J. A. Ritcey, and J. J. Burlingame, "Polyphase codes and optimal filters for multiple user ranging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 2, 752-767, April 1995.
doi:10.1109/7.381922 Google Scholar
3. Levanon, N. and E. Mozeson, Radar Signals, John Wiley & Sons.
4. Chen, C.-Y., C.-H. Wang, and C.-C. Chao, "Complete complementary codes and generalized Reed-Muller codes," IEEE Communications Letters, Vol. 12, No. 11, 849-851, November 2008.
doi:10.1109/LCOMM.2008.081189 Google Scholar
5. Golay, M. J. E. and D. J. Harris, "A new search for skew symmetric binary sequences with optimal merit factors," IEEE Transactions on Information Theory, Vol. 36, No. 5, 1163-1166, September 1990.
doi:10.1109/18.57219 Google Scholar
6. Golay, M. J. E., "The merit factor of long low autocorrelation binary sequences with optimal merit factors," IEEE Transactions on Information Theory, Vol. 28, 543-549, 1982.
doi:10.1109/TIT.1982.1056505 Google Scholar
7. Helleseth, T., D. Sarwate, H.-Y. Song, and K. Yang, "Third International Conference on Sequences and Their Applications-SETA," revised selected papers, Seoul, Korea, October 24-28, 2004. Google Scholar
8. Lecture Notes in Computer Science, Vol. 3486, Tod Helleseth Ed., Springer, 2005.
9. Guerci, J. R. and S. U. Pillai, "Theory and application of optimum transmit-receive radar," IEEE International Radar Conference, 705-709, 2000. Google Scholar
10. Van Trees, H. L., Optimum Array Processing, Wiley Interscience, New York, 2002, ISBN 0471093904.
11. Van Trees, H. L., "Optimum signal design and processing for reverberation-limited environments," IEEE Transactions on Military Electronics, Vol. 9, No. 3, 212-229, 1965.
doi:10.1109/TME.1965.4323213 Google Scholar
12. Athans, M. and F. C. Schweppe, "Optimal waveform design via control theoretic principles," Information Control, Vol. 10, 335-377, 1967.
doi:10.1016/S0019-9958(67)90183-0 Google Scholar
13. DeLong, D. and E. Hofstetter, "On the design of optimum radar waveforms for clutter rejection," IEEE Transactions on Information Theory, Vol. 13, No. 3, 454-463, 1967.
doi:10.1109/TIT.1967.1054038 Google Scholar
14. Kincaid, T. G., "Optimum waveforms for correlation detection in the sonar environment noise-limited conditions," The Journal of the Acoustical Society of America, Vol. 44, No. 3, 787-796, 1968.
doi:10.1121/1.1911175 Google Scholar
15. Gjessing, D. T., "Target Adaptive Matched Illumination Radar: Principles and Application," Peter Peregrinus Ltd., 1986, ISBN: 0-86341-057-X. Google Scholar
16. Schreiber, H. H. and M. G. O'Connor, "Adaptive waveform radar," United States Patent 4,901,082, February 1990. Google Scholar
17. Bell, M. R., "Information theory and radar waveform design," IEEE Transaction on Information Theory, Vol. 39, No. 5, 1578-1597, September 1993.
doi:10.1109/18.259642 Google Scholar
18. Lee, S. P. and J. L. Uhran, "Optimum signal and filter design in underwater acoustic echo ranging systems," IEEE Transactions on Aerospace and Electronic Systems, Vol. 9, No. 5, 701-713.
doi:10.1109/TAES.1973.309754 Google Scholar
19. Kayani, J. K., "Development and application of spread spectrum ultrasonic evaluation technique," Ph.D. Dissertation, Iowa State University, Ames, IA, 1996. Google Scholar
20. Narayanan, R. M., X. Xu, and J. A. Henning, "Radar penetration imaging using ultra-wideband (UWB) random noise waveforms," IEE Proc. on Radar, Sonar and Navigation, Vol. 151, No. 3, 143-148, June 2004.
doi:10.1049/ip-rsn:20040418 Google Scholar
21. Richards, M. A., et al. Principles of Modern Radar: Basic Principles, Scitech Publishing, Inc., 2010.
22. Lewis, B. L., F. F. Kretschmer, and Jr., "A new class of polyphase pulse compression codes and techniques," IEEE Transactions on Aerospace and Electronics Systems, Vol. 17, No. 3, May 1981.
doi:10.1109/TAES.1981.309063 Google Scholar
23. Lewis, B. L., F. F. Kretschmer, and Jr., "Linear frequency modulation derived polyphase pulse compression codes and techniques," IEEE Transactions on Aerospace and Electronics Systems, Vol. 18, No. 5, May 1981. Google Scholar
24. Lee, W. K., H. D. Gri±ths, and L. Vinagre, "Developments in radar waveform design," 12th International Conference on Microwaves and Radar (MIKON), Vol. 4, 56-76, May 1998. Google Scholar
25. Lee, W. K., H. D. Gri±ths, and R. Benjamin, "Integrated sidelobe energy reduction technique using optimal polyphase codes ," Electronics Letters, Vol. 35, No. 24, November 1999. Google Scholar
26. Nunn, C. J. and G. E. Coxson, "Polyphase pulse compression codes with optimal peak and integrated sidelobes," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 2, 775-781, April 2009.
doi:10.1109/TAES.2009.5089560 Google Scholar
27. Nunn, C. and G. Coxson, "Best known autocorrelation peak sideobe levels for binary codes of length 71 to 105," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 1, 392-395, January 2008.
doi:10.1109/TAES.2008.4517015 Google Scholar
28. Ackroyd, M. H. and Ghani, "Optimum mismatched filters for sidelobe suppression," IEEE Transactions on Aerospace and Electronic Systems, Vol. 9, No. 2, 214-218, March 1973.
doi:10.1109/TAES.1973.309769 Google Scholar
29. Molina, A. and P. C. Fannin, "Application of mismatched filter theory to bandpass impulse response measurements," Electronics Letters, Vol. 29, No. 2, 162-163, January 1993.
doi:10.1049/el:19930109 Google Scholar
30. Levanon, N., "Cross-correlation of long binary signals with longer mismatched filters," IEE Proc. Radar, Sonar and Navigation, 1-6, 2005. Google Scholar
31. Levanon, N. and A. Scharf, "Range sidelobes blanking by comparing outputs of contrasting mismatched filters," IET Radar Sonar Navig., Vol. 3, No. 3, 265-277, 2009.
doi:10.1049/iet-rsn:20080156 Google Scholar
32. Levanon, N., "Noncoherent radar pulse compression based on complementary sequences," IEEE Trans. on Aerospace and Electronic Systems, Vol. 45, No. 2, 742-747, April 2009.
doi:10.1109/TAES.2009.5089554 Google Scholar
33. Bhatt, T. D., E. G. Rajan, and P. V. D. S. Rao, "Design of frequency-coded waveforms for target detection," IET Radar Sonar Navig., Vol. 2, No. 5, 388-394, 2008.
doi:10.1049/iet-rsn:20070078 Google Scholar
34. Shinriki, M., H. Takase, and H. Susaki, "Periodic binary codes with zero and small time sidelobe levels," IEE Proc. --- Radar Sonar Navig., Vol. 153, No. 6, December 2006. Google Scholar
35. Lee, W.-K., "A pair of asymmetric weighting receivers and polyphase codes for e±cient aperiodic correlations," IEEE Communications Letters, Vol. 10, No. 5, 387-389, May 2006.
doi:10.1109/LCOMM.2006.1633332 Google Scholar
36. Sebt, M. A., A. Sheikhi, and M. M. Nayebi, "Orthogonal frequency-division multiplexing radar signal design with optimized ambiguity function and low peak-to-average power ratio," IET Radar Sonar Navig., Vol. 3, No. 2, 122-132, 2009.
doi:10.1049/iet-rsn:20080106 Google Scholar
37. Liu, B., "Orthogonal discrete frequency-coding waveform set design with minimized autocorrelation sidelobes," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 4, 1650-1657, October 2009.
doi:10.1109/TAES.2009.5310326 Google Scholar
38. Searle, S. J., S. D. Howard, and W. Moran, "Formation of ambiguity functions with frequency-separated Golay coded pulses," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 4, 1580-1597, October 2009.
doi:10.1109/TAES.2009.5310320 Google Scholar
39. Liu, J. and W. Chu, "Design of binary multiple level sequences," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 1, 26-36, January 2011.
doi:10.1109/TAES.2011.5705657 Google Scholar
40. Alejos, A. V., M. G. Sánchez, and I. Cuiñas, "Improvement of wideband radio channel swept time cross-correlation sounders by using golay sequences," IEEE Transactions on Vehicular Technology, Vol. 56, No. 1, January 2007.
doi:10.1109/TVT.2006.889581 Google Scholar
41. Zakeri, B. G., M. Zahabi, and S. Alighale, "Sidelobes level improvement by using a new scheme used in microwave pulse compression radars," Progress In Electromagnetics Research Letters, Vol. 30, 81-90, 2012.
doi:10.2528/PIERL12011102 Google Scholar
42. Lee, H. and Y.-H. Kim, "Weather radar network with pulse compression of arbitrary nonlinear waveforms: Ka-band test-bed and initial observations," Progress In Electromagnetics Research B, Vol. 25, 75-92, 2010.
doi:10.2528/PIERB10071402 Google Scholar