Vol. 128
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-02
Specific Absorption Rate Computations with a Nodal-Based Finite Element Formulation
By
Progress In Electromagnetics Research, Vol. 128, 399-418, 2012
Abstract
The aim of this work is to asses the performance of a nodal-based finite element formulation when applied to the computation of specific absorption rate (SAR) problems. This formulation solves numerically the regularized Maxwell equations using nodal elements and, in principle, it offers several advantages: It provides spurious-free solutions and well-conditioned matrices without the need of Lagrange multipliers or scalar potentials. Its integral representation is well-suited for hybridization with integral numerical techniques because of a low-order singular kernel. Also, the nodal approximation of the electromagnetic problem is easier to couple to a thermal finite element problem which usually also employs nodal elements. But, on the other hand, we need to take special care of the points of the domain where the field is singular to obtain accurate solutions. In this paper, we show the impact of the singularities on the performance of the proposed finite element formulation and how its good features are affected when solving real-life SAR problems.1
Citation
Ruben Otin Herve Gromat , "Specific Absorption Rate Computations with a Nodal-Based Finite Element Formulation," Progress In Electromagnetics Research, Vol. 128, 399-418, 2012.
doi:10.2528/PIER12041105
http://www.jpier.org/PIER/pier.php?paper=12041105
References

1. Hazard, C. and M. Lenoir, "On the solution of the time-harmonic scattering problems for Maxwells equations," SIAM Journal on Mathematical Analysis, Vol. 27, 1597-1630, 1996.
doi:10.1137/S0036141094271259

2. Otin, R., "Regularized Maxwell equations and nodal finite elements for electromagnetic field computations," Electromagnetics, Vol. 30, 190-204, 2010.
doi:10.1080/02726340903485489

3. Costabel, M. and M. Dauge, "Maxwell and Lamé eigenvalues on polyhedra," Mathematical Methods in Applied Science, Vol. 22, 243-258, 1999.
doi:10.1002/(SICI)1099-1476(199902)22:3<243::AID-MMA37>3.0.CO;2-0

4. Costabel, M., "A coercive bilinear form for Maxwells equations," Journal of Mathematical Analysis and Applications, Vol. 157, No. 2, 527-541, 1991.
doi:10.1016/0022-247X(91)90104-8

5. Lohrengel, S. and S. Nicaise, "Singularities and density problems composite materials in electromagnetism," Communications Differential Equations, Vol. 27, No. 7, 1575-1623, 2002.
doi:10.1081/PDE-120005849

6. Preis, K., O. Bíró, and I. Ticar, "Gauged current vector potential and reetrant corners in the FEM analysis of 3D eddy currents," IEEE Trans. Magn., Vol. 36, 840-843, 2000.
doi:10.1109/20.877575

7. Kaltenbacher, M. and S. Reitzinger, "Appropriate finite-element formulation for 3-D electromagnetic-field problems," IEEE Trans. Magn., Vol. 38, 513-516, 2002.
doi:10.1109/20.996135

8. Costabel, M. and M. Dauge, "Weighted regularization of Maxwell equations in polyhedral domains," Numerische Mathematik, Vol. 93, No. 2, 239-277, 2002.
doi:10.1007/s002110100388

9. Bladel, J. V., Singular Electromagnetic Fields and Sources, IEEE Press, 1991.

10. Paulsen, K. D., D. R. Lynch, and J. W. Strohbehn, "Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric media," IEEE Trans. Microw. Theory Tech., Vol. 36, 682-693, 1988.
doi:10.1109/22.3572

11. Otin, R., "ERMES user guide,", ERMES user guide," International Center for Numerical Methods in Engineering (CIMNE), ref.: IT-617, Tech.Rep. 2011.

12., , GiD, the personal pre and post processor, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, 2010, Available: http://www.gidhome.com..

13. Freund, R. W. and N. M. Nachtigal, "QMR: A quasi-minimal residual method for non-Hermitian linear systems," SIAM Journal: Numerische Mathematik, Vol. 60, 315-339, 1991.
doi:10.1007/BF01385726

14. Kubacki, R., J. Sobiech, J.Kieliszek, and A. Krawczyk, "Comparison of numerical and measurement methods of SAR of ellipsoidal phantoms with muscle tissue electrical parameters," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 25, No. 3, 691-696, 2006.
doi:10.1108/03321640610666853

15. Jin, J., The Finite Element Method in Electromagnetics, 2nd edition, John Wiley & Sons, 2002.

16., Radiall, "Design, development and manufacturing of connectors, antennas and microwave components," Voreppe, France, 2010, Available: http://www.radiall.com..

17., FEKO, "EM simulation software,", 2010, http://www.feko.info..

18. Otin, R., "Numerical study of the thermal effects induced by a RFID antenna in vials of blood plasma," Progress In Electromagnetics Research Letters, Vol. 22, 129-138, 2011.

19. Gomez-Calero, C., N. Jamaly, L. Gonzalez, and R. Martinez, "Effect of mutual coupling and human body on MIMO performances," The 3rd European Conference on Antennas and Propagation (EuCAP), 1042-1046, 2009.

20. Bui, V. P., X. C. Wei, and E. P. Li, "An effcient simulation technology for characterizing the ultra-wide band signal propagation in a wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2575-2588, 2010.
doi:10.1163/156939310793675691

21. Gao, S., S.-Q. Xiao, H. Zhu, W. Shao, and B.-Z. Wang, "2.45 GHz body-worn planar monopole antenna and its application in body-worn MIMO system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 661-671, 2011.
doi:10.1163/156939311794827212

22. Cvetkovi, M., D. Poljak, and A. Peratta, "FETD computation of the temperature distribution induced into a human eye by a pulsed laser," Progress In Electromagnetics Research, Vol. 120, 403-421, 2011.

23. Attardo, E. A., T. Isernia, and G. Vecchi, "Field synthesis in inhomogeneous media: Joint control of polarization, uniformity and SAR in MRI B1field," Progress In Electromagnetics Research, Vol. 118, 355-377, 2011.
doi:10.2528/PIER11051910

24. Angulo, L. D., S. G. Garcia, M. F. Pantoja, C. C. Sanchez, and R. G. Martin, "Improving the SAR distribution in Petri-dish cell cultures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 815-826, 2010.
doi:10.1163/156939310791036322

25. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402

26. Jorge-Mora, T., M. Alvarez-Folgueiras, J. M. Leiro, F. J. JorgeBarreiro, F. J. Ares-Pena, and E. Lopez-Martin, "Exposure to 2.45 GHz microwave radiation provokes cerebral changes in induction of HSP-90 α/β heat shock protein in rat," Progress In Electromagnetics Research, Vol. 100, 351-379, 2010.
doi:10.2528/PIER09102804

27. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1667-1677, 2011.
doi:10.1163/156939311797164945

28. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005