1. Wu, T. K., Frequency Selective Surfaces and Grid Array, Wiley, New York, 1995.
2. Munk, B. A., "Frequency Selective Surfaces: Theory and Design," Wiley, New York, 2000. Google Scholar
3. Khromova, I., I. Ederra, R. Gonzalo, and B. P. de Hon, "Symmet-rical pyramidal horn antennas based on EBG structures," Progress In Electromagnetics Research B, Vol. 29, 1-22, 2011.
doi:10.2528/PIERB11020403 Google Scholar
4. Huang, M.-J., M.-Y. Lv, and Z. Wu, "Transmission upper bound of planar single-layer frequency selective surface," Progress In Electromagnetics Research B, Vol. 23, 15-38, 2010.
doi:10.2528/PIERB10042701 Google Scholar
5. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011. Google Scholar
6. Veysi, M. and M. Shafaee, "EBG frequency response tuning using an adjustable air-gap," Progress In Electromagnetics Research Letters, Vol. 19, 31-39, 2010. Google Scholar
7. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "Omnidirectional horizontally polarized antenna with EBG cavity for gain enhancement," Progress In Electromagnetics Research Letters, Vol. 15, 79-87, 2010.
doi:10.2528/PIERL10042207 Google Scholar
8. Ren, L.-S., Y.-C. Jiao, J.-J. Zhao, and F. Li, "RCS reduction for a FSS-backed reflectarray using a ring element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.
doi:10.2528/PIERL11071201 Google Scholar
9. Kong, Y. W. and S. T. Chew, "EBG-based dual mode resonator filter," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 3, 124-126, Mar. 2004.
doi:10.1109/LMWC.2003.822570 Google Scholar
10. Coccioli, R., F.-R. Yang, K.-P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2123-2130, Nov. 1999.
doi:10.1109/22.798008 Google Scholar
11. Jandieri, V., K. Yasumoto, and Y.-K. Cho, "Rigorous analysis of electromagnetic scattering by cylindrical EBG structures," Progress In Electromagnetics Research, Vol. 121, 317-342, 2011.
doi:10.2528/PIER11090903 Google Scholar
12. Kim, S.-H., T. T. Nguyen, and J.-H. Jang., "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011. Google Scholar
13. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011. Google Scholar
14. Lin, S. Y. and J. G. Fleming, "A three-dimensional optical photonic crystal," J. Lightwave Technol., Vol. 17, 1944-1947, 1999.
doi:10.1109/50.802977 Google Scholar
15. Kushta, T. and K. Yasumoto, "Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell," Progress In Electromagnetics Research, Vol. 29, 69-85, 2000.
doi:10.2528/PIER99103101 Google Scholar
16. Pelosi, G., A. Cocchi, and A. Monorchio, "A hybrid FEM-based procedure for the scattering from photonic crystals illuminated by a Gaussian beam," IEEE Transactions on Antennas and Propagation, Vol. 48, 973-980, Jun. 2000.
doi:10.1109/8.865232 Google Scholar
17. Yang, H. Y. D., "Finite difference analysis of 2-D photonic crystals," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 2688-2695, Dec. 1996.
doi:10.1109/22.554631 Google Scholar
18. Frezza, F., L. Pajewski, and G. Schettini, "Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 941-951, Mar. 2003.
doi:10.1109/TMTT.2003.808696 Google Scholar
19. Wasylkiwskyj, W., "On the transmission coeffcient of an infinite grating of parallel perfectly conducting circular cylinders," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 704-708, Sep. 1971.
doi:10.1109/TAP.1971.1140011 Google Scholar
20. Saleh, A. A. M., "An adjustable quasi-optical bandpass filter --Part I: Theory and design formulas," IEEE Transactions on Microwave Theory and Techniques, Vol. 22, No. 7, 728-734, Jul. 1974.
doi:10.1109/TMTT.1974.1128319 Google Scholar
21. Yasumoto, K., H. Toyama, and T. Kushta, "S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 41-44, 2004. Google Scholar
22. Yasumoto, K., H. Toyama, and T. Kushta, "Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2603-2611, Oct. 2004.
doi:10.1109/TAP.2004.834440 Google Scholar
23. Tsang, L., J. A. Kong, and K.-H. Ding, "Scattering of Electromagnetic Waves: Theories and Applications," John Wiley and Sons, INC., New York, 2000. Google Scholar
24. Yasumoto, K. and K. Yoshitomi, "Effcient calculation of lattice sums for freespace periodic Green function," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 6, 1050-1055, Jun. 1999.
doi:10.1109/8.777130 Google Scholar
25. Lech, R. and J. Mazur, "Electromagnetic curtain effect and tunneling properties of multilayered periodic structures," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 201-205, 2008.
doi:10.1109/LAWP.2008.919355 Google Scholar
26. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804 Google Scholar
27. Kusiek, A. and J. Mazur, "Application of hybrid finite-difference mode-matching method to analysis of structures loaded with axially-symmetrical posts," Microwave and Optical Technology Letters, Vol. 53, No. 1, 189-194, Jan. 2011.
doi:10.1002/mop.25644 Google Scholar
28. Lech, R. and J. Mazur, "Analysis of circular cavity with cylindrical objects," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2115-2123, Oct. 2007.
doi:10.1109/TMTT.2007.906486 Google Scholar
29. Yasumoto, K., Electromagnetic Theory and Applications for Photonic Crystals, CRC Press, New-York, 2005.
doi:10.1201/9781420026627
30. Stutzman, W. and Polarization in Electromagnetic Systems, Artech House, 1993. Google Scholar
31. Mrozowski, M. and J. Mazur, "General analysis of a parallel-plate waveguide inhomogeneously filled with gyromagnetic media," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 4, 388-395, Apr. 1986.
doi:10.1109/TMTT.1986.1133358 Google Scholar