Vol. 129
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-27
Study of Electromagnetic Scattering from Ship Wakes on PEC Sea Surfaces by the Small-Slope Approximation Theory
By
Progress In Electromagnetics Research, Vol. 129, 387-404, 2012
Abstract
Electromagnetic (EM) scattering properties from the ship wakes on the two-dimensional (2-D) perfect electric conductor (PEC) sea surfaces are studied by utilizing the small-slope approximation (SSA) theory. Considering the limitations of using the ideal plane EM wave incident upon a rough sea surface of the limited size, the expressions of the scattered field and scattering amplitude are derived by utilizing the modified tapered incident field. Based on a simplified segmented ocean spectrum model, the bistatic and monostatic normalized radar cross sections (NRCS) from the PEC sea surfaces with and without ship wakes are calculated, respectively. Meanwhile, the variation of scattering coefficient as scattering angles is given and compared under different polarization states. The results show that the scattering from the PEC sea surfaces with ship wakes is evidently different from that without them in bistatic and monostatic scattering. This provides a basis to extract ship wake characteristics. Also it shows that the SSA is a very effective analysis method to deal with the EM scattering from the rough sea surface. Finally, the effect of different tapered factors on backscattering coefficient is discussed, and it is concluded that an artificial reflection from the boundaries and a scattering upwarping from low-grazing incidence can be avoided just when the tapered factor is relatively smaller. This gives the theoretical basis for the analysis of EM scattering characteristics of ship wakes on the PEC sea surface.
Citation
Rong-Qing Sun, Min Zhang, Chao Wang, and Yong Chen, "Study of Electromagnetic Scattering from Ship Wakes on PEC Sea Surfaces by the Small-Slope Approximation Theory," Progress In Electromagnetics Research, Vol. 129, 387-404, 2012.
doi:10.2528/PIER12041405
References

1. Baussard, A., M. Rochdi, and A. Khenchaf, "PO/mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

2. Ai, J., X. Qi, W. Yu, et al. "A novel ship wake CFAR detection algorithm based on SCR enhancement and normalized hough transform," IEEE Trans. on Geosci. Remote Sens., Vol. 8, No. 4, 681-685, 2011.
doi:10.1109/LGRS.2010.2100076

3. Zhao, Y. W., M. Zhang, X. Geng, and P. Zhou, "A comprehensive facet model for bistatic SAR imagery of dynamic ocean scene," Progress In Electromagnetics Research, Vol. 123, 427-445, 2012.
doi:10.2528/PIER11100910

4. Valenzuela, G. R., "Theories for the interaction of electromagnetic and oceanic waves - A review," Boundary Layer Meteorology, Vol. 13, 61-85, 1978.
doi:10.1007/BF00913863

5. Jin, Y. Q. and Z. X. Li, "Numerical simulation of radar surveillance for the ship target and oceanic clutters in two-dimensional model," Radio Science, Vol. 38, No. 3, 1045, 2003.

6. Chen, H., M. Zhang, and H.-C. Yin, "Faced-based treatment on microwave bistatic scattering of three-dimensional sea surface with electrically large ship," Progress In Electromagnetics Research, Vol. 123, 385-405, 2012.
doi:10.2528/PIER11101108

7. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188

8. Guo, L.-X., Y. Liang, J. Li, and Z.-S. Wu, "A high order intergral SPM for the conducting rough surface scattering with the tapered wave incidence-TE case," Progress In Electromagnetics Research, Vol. 114, 333-352, 2011.

9. Lee, P. H. Y., et al. "Wind-speed dependence of small-grazing-angle microwave backscatter from sea surfaces," IEEE Trans. on Antennas and Propagat., Vol. 44, No. 3, 333-340, 1996.
doi:10.1109/8.486302

10. Bahar, E. and B. S. Lee, "Full wave solutions for rough-surface bistatic radar cross sections: Comparison with small perturbation, physical optics, numerical and experimental results," Radio Science, Vol. 29, No. 2, 407-429, 1994.
doi:10.1029/93RS03444

11. Bahar, E. and B. S. Lee, "Radar scatter cross section for two-dimensional random rough surfaces-full wave solutions and comparisons with experiments," Wave in Radom Media, Vol. 6, 1-23, 1996.
doi:10.1080/13616679609409792

12. Vaitilingom, L. and A. Khenchaf, "Radar cross sections of sea and ground clutter estimated by two scale model and small slope approximation in HF-VHF bands," Progress In Electromagnetics Research B, Vol. 29, 311-338, 2011.
doi:10.2528/PIERB11021607

13. Voronovich, A. G., "Small-slope approximation in wave scattering by rough surfaces," Sov. Phys. JETP, Vol. 62, 65-70, 1985.

14. Berginc, G. and C. Bourrely, "The small-slope approximation method applied to a three-dimensional slab with rough boundaries," Progress In Electromagnetics Research, Vol. 73, 131-211, 2007.
doi:10.2528/PIER07030806

15. Toporkov, J. V. and G. S. Brown, "Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: Doppler analysis," IEEE Trans. on Antennas and Propagat., Vol. 50, No. 4, 417-425, Apr. 2002.
doi:10.1109/TAP.2002.1003376

16. Chevalier, B. and G. Berginc, "Small-slope approximation method: scattering of a vector wave from 2D dielectric and metallic surfaces with Gaussian and non-Gaussian statistics," Proceedings of SPIE, Vol. 4100, 22-32, 2000.
doi:10.1117/12.401662

17. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topics, Wiley Series in Remote Sensing, Wiley Interscience, New York, 2001.
doi:10.1002/0471224278

18. Fung, A. K. and K. K. Lee, "A semi-empirical sea-spectrum model for scattering coeffcient estimation," IEEE Journal of Oceanic Engineering, Vol. 7, 166-176, 1982.
doi:10.1109/JOE.1982.1145535

19. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401

20. Pierson, W. J. and L. Moscowitz, "A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii," J. Geophys. Res., Vol. 69, No. 24, 5181-5190, 1964.
doi:10.1029/JZ069i024p05181

21. Yang, W., Z. Zhao, C. Qi, W. Liu, and Z.-P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

22. Shakeri, M., M. Tavakolinejad, and J. H. Duncan, "An experimental investigation of divergent bow waves simulated by a two-dimensional plus temporal wave marker technique," J. Fluid Mech., Vol. 634, 217-243, 2009.
doi:10.1017/S0022112009007216

23. Hennings, R. R., W. Alpers, and A. Viola, "Radar imaging of Kelvin arms of ship wakes," Int. J. Remote Sensing, Vol. 20, No. 13, 2519-2543, 1999.
doi:10.1080/014311699211912

24. Milgram, J. H., R. A. Skop, R. D. Pelter, and O. M. Griffn, "Modeling short sea wave energy distributions in the far wakes of ships," J. Geophys. Res., Vol. 98, No. C4, 7115-7124, 1993.
doi:10.1029/92JC02611

25. Sun, R. Q., G. Luo, M. Zhang, and C. Wang, "Electromagnetic scattering model of the Kelvin wake and turbulent wake by a moving ship," Waves in Random Media, Vol. 21, No. 3, 501-504, 2011.
doi:10.1080/17455030.2011.591446

26. Mcdaniel, S. T., "An extension of the small-slope approximation for rough surface scattering," Waves in Random Media, Vol. 5, No. 2, 201-214, 1995.
doi:10.1088/0959-7174/5/2/004

27. Albert, M. D., Y. J. Lee, H.-T. Ewe, and H.-T. Chuah, "Multilayer model formulation and analysis of radar backscattering from sea ice," Progress In Electromagnetics Research, Vol. 128, 267-290, 2012.

28. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random Media, Vol. 11, No. 3, 247-269, 2001.

29. Zhang, M., W. Luo, G. Luo, C. Wang, and H.-C. Yin, "Composite scattering of ship on sea surface with breaking waves," Progress In Electromagnetics Research,, Vol. 123, 263-277, 2012.
doi:10.2528/PIER11100811

30. Voronovich, A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves in Random Media, Vol. 4, 337-367, 1994.
doi:10.1088/0959-7174/4/3/008

31. Li, X. F. and X. J. Xu, "Scattering and doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces," IEEE Trans. on Geosci. Remote Sens., Vol. 49, No. 2, 603-611, 2011.
doi:10.1109/TGRS.2010.2060204

32. Berginc, G., "Small-slope approximation method: A further study of vector wave scattering from two-dimensional surfaces and comparison with experimental data," Progress In Electromagnetics Research, Vol. 37, 251-287, 2002.
doi:10.2528/PIER02070603

33. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

34. Tsang, L., J. A. Kong, K. H. Ding, and C. A. Ao, Scattering of Electromagnetic Waves, Numerical Simulations, 270-271, Wiley Series in Remote Sensing, Wiley Interscience, New York, 2001.
doi:10.1002/0471224308

35. Ye, H. and Y. Jin, "Parameterization of the tapered incidence wave for numerical simulation of electromagnetic scattering from rough surfaces," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 3, 1234-1237, 2005.
doi:10.1109/TAP.2004.842586

36. Toporkov, J. V., R. S. Awadallah, and G. S. Brown, "Issues related to the use of Gaussian-like incident field for low grazing angle scattering," J. of the Opt. Soc. Amer. A, Opt. Image Sci. and Vision, Vol. 16, No. 1, 176-187, 1999.
doi:10.1364/JOSAA.16.000176