1. Kelly, K. L., et al. "The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment," Journal of Physical Chemistry B, Vol. 107, No. 3, 668-677, 2003.
doi:10.1021/jp026731y Google Scholar
2. Liaw, J.-W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865 Google Scholar
3. Muhlschlegel, P., et al. "Resonant optical antennas," Science, Vol. 308, No. 5728, 1607-1609, 2005.
doi:10.1126/science.1111886 Google Scholar
4. Xie, H., F. M. Kong, and K. Li, "THE electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 534-547, 2009.
doi:10.1163/156939309787612419 Google Scholar
5. Rand, B. P., P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," Journal of Applied Physics, Vol. 96, No. 12, 7519-7526, 2004.
doi:10.1063/1.1812589 Google Scholar
6. Huang, X. H., et al. "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," Journal of the American Chemical Society, Vol. 128, No. 6, 2115-2120, 2006.
doi:10.1021/ja057254a Google Scholar
7. Yavuz, M. S., et al. "Gold nanocages covered by smart polymers for controlled release with near-infrared light," Nature Materials, Vol. 8, No. 12, 935-939, 2009.
doi:10.1038/nmat2564 Google Scholar
8. Jain, P. K., et al. "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," Journal of Physical Chemistry B, Vol. 110, No. 14, 7238-7248, 2006.
doi:10.1021/jp057170o Google Scholar
9. Anker, J. N., et al. "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, No. 6, 442-453, 2008.
doi:10.1038/nmat2162 Google Scholar
10. Jain, P. K., et al. "Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging sensing, biology, and medicine," Accounts of Chemical Research, Vol. 41, No. 12, 1578-1586, 2008.
doi:10.1021/ar7002804 Google Scholar
11. Noguez, C., "Surface plasmons on metal nanoparticles: The influence of shpae and physical environment," Journal of Physical Chemistry C, Vol. 111, No. 10, 3806-3819, 2007.
doi:10.1021/jp066539m Google Scholar
12. Sau, T. K., et al. "Properties and applications of colloidal nonspherical noble metal nanoparticles," Advanced Materials, Vol. 22, No. 16, 1805-1825, 2010.
doi:10.1002/adma.200902557 Google Scholar
13. Millstone, J. E., et al. "Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms," Journal of the American Chemical Society, Vol. 127, No. 15, 5312-5313, 2005.
doi:10.1021/ja043245a Google Scholar
14. Millstone, J. E., G. S. Metraux, and C. A. Mirkin, "Controlling the edge length of gold nanoprisms via a seed-mediated approach," Advanced Functional Materials, Vol. 16, No. 9, 1209-1214, 2006.
doi:10.1002/adfm.200600066 Google Scholar
15. Aherne, D., et al. "Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature," Advanced Functional Materials, Vol. 18, No. 14, 2005-2016, 2008.
doi:10.1002/adfm.200800233 Google Scholar
16. Haes, A. J., et al. "Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," Journal of Physical Chemistry B,, Vol. 108, No. 22, 6961-6968, 2004.
doi:10.1021/jp036261n Google Scholar
17. Hao, E. and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," Journal of Chemical Physics, Vol. 120, No. 1, 357-366, 2004.
doi:10.1063/1.1629280 Google Scholar
18. Nelayah, J., et al. "Mapping surface plasmons on a single metallic nanoparticle," Nature Physics, Vol. 3, No. 5, 348-353, 2007.
doi:10.1038/nphys575 Google Scholar
19. Aherne, D., et al. "From Ag nanoprisms to triangular AuAg nanoboxes," Advanced Functional Materials, Vol. 20, No. 8, 1329-1338, 2010.
doi:10.1002/adfm.200902030 Google Scholar
20. Tong, L., et al. "Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity," Angewandte Chemie International Edition, Vol. 49, No. 20, 3485-3488, 2010.
doi:10.1002/anie.201000440 Google Scholar
21. Chen, J. Y., et al. "Gold nanocages: Engineering their structure for biomedical applications," Advanced Materials, Vol. 17, No. 18, 2255-2261, 2005.
doi:10.1002/adma.200500833 Google Scholar
22. Kudelski, A., "Influence of electrostatically bound proteins on the structure of linkage monolayers: Adsorption of bovine serum albumin on silver and gold substrates coated with monolayers of 2-mercaptoethanesulphonate," Vibrational Spectroscopy, Vol. 33, No. 1-2, 197-204, 2003.
doi:10.1016/j.vibspec.2003.09.003 Google Scholar
23. Qian, X. M., et al. "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nature Biotechnology, Vol. 26, No. 1, 83-90, 2008.
doi:10.1038/nbt1377 Google Scholar
24. Link, S., Z. Wang, and M. El-Sayed, "Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition," The Journal of Physical Chemistry B, Vol. 103, No. 18, 3529-3533, 1999.
doi:10.1021/jp990387w Google Scholar
25. Hu, M., et al. "Optical properties of Au-Ag nanoboxes studied by single nanoparticle spectroscopy," Journal of Physical Chemistry B, Vol. 110, No. 40, 19923-19928, 2006.
doi:10.1021/jp0621068 Google Scholar
26. Metraux, G. S., et al. "Triangular nanoframes made of gold and silver," Nano Letters, Vol. 3, No. 4, 519-522, 2003.
doi:10.1021/nl034097+ Google Scholar
27. Palik, E. D. (ed.), Handbook of Optical Constants of Solids, Academic Press, New York, 1998.
28. Jiang, L., et al. "Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells," Analytical and Bioanalytical Chemistry, Vol. 400, No. 9, 2793-2800, 2011.
doi:10.1007/s00216-011-4894-6 Google Scholar
29. Qian, J., et al. "Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging," Biomaterials, Vol. 32, No. 6, 1601-1610, 2011.
doi:10.1016/j.biomaterials.2010.10.058 Google Scholar
30. Li, X., J. Qian, and S. He, "Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing," Nanotechnology, Vol. 19, 355501, 2008. Google Scholar
31. Neuberger, T., et al. "Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system," Journal of Magnetism and Magnetic Materials, Vol. 293, No. 1, 483-496, 2005.
doi:10.1016/j.jmmm.2005.01.064 Google Scholar
32. Gupta, A. K. and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomate-rials, Vol. 26, No. 18, 3995-4021, 2005.
doi:10.1016/j.biomaterials.2004.10.012 Google Scholar
33. Lu, W., et al. "Tumor site-specific silencing of NF-kappa B p65 by targeted hollow gold nanosphere-mediated photothermal transfection," Cancer Research, Vol. 70, No. 8, 3177-3188, 2010.
doi:10.1158/0008-5472.CAN-09-3379 Google Scholar
34. Link, S., et al. "Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence," Journal of Physical Chemistry A, Vol. 103, No. 9, 1165-1170, 1999.
doi:10.1021/jp983141k Google Scholar
35. Kamat, P. V., M. Flumiani, and G. V. Hartland, "Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation," Journal of Physical Chemistry B, Vol. 102, No. 17, 3123-3128, 1998.
doi:10.1021/jp980009b Google Scholar
36. Kurita, H., A. Takami, and S. Koda, "Size reduction of gold particles in aqueous solution by pulsed laser irradiation," Applied Physics Letters, Vol. 72, No. 7, 789-791, 1998.
doi:10.1063/1.120894 Google Scholar
37. Inasawa, S., M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," Journal of Physical Chemistry B, Vol. 109, No. 8, 3104-3111, 2005.
doi:10.1021/jp045167j Google Scholar
38. Plech, A., et al. "Femtosecond laser near-field ablation from gold nanoparticles," Nature Physics, Vol. 2, No. 1, 44-47, 2006.
doi:10.1038/nphys191 Google Scholar
39. Wheeler, D. A., et al. "Optical properties and persistent spectral hole burning of near infrared-absorbing hollow gold nanospheres," Journal of Physical Chemistry C, Vol. 114, No. 42, 18126-18133, 2010.
doi:10.1021/jp1076824 Google Scholar