Vol. 129
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-13
Spatial Beam Compression and Effective Beam Injection Using Triangular Gradient Index Profile Photonic Crystals
By
Progress In Electromagnetics Research, Vol. 129, 51-67, 2012
Abstract
Spatial beam compression of an electromagnetic wave is one of the fundamental techniques employed in microwaves and optics. As there are many ways to achieve this task using the combination of prisms and lenses, recent research suggests the parabolic gradient index photonic crystals (GRIN PC) for the design of spatial beam compressor owing to its functionalities. However, the fabrication of a graded media with the parabolic profile is a difficult challenge in practical realization. To an alternative, present work attempts this problem with respect to the triangular gradient index profile. The performance and aspects of the beam compression are investigated experimentally using the pillar type GRIN PC at the microwave length-scales. The utility of the device for an effective beam injection to the photonic-waveguide component is further demonstrated experimentally.
Citation
Natesan Yogesh Venkatachalam Subramanian , "Spatial Beam Compression and Effective Beam Injection Using Triangular Gradient Index Profile Photonic Crystals," Progress In Electromagnetics Research, Vol. 129, 51-67, 2012.
doi:10.2528/PIER12050206
http://www.jpier.org/PIER/pier.php?paper=12050206
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B, Vol. 58, No. 16, R10096, 1998.

3. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett., Vol. 74, No. 9, 1212, 1999.

4. Yogesh, N. and V. Subramanian, "Analysis of self-collimation based cavity resonator formed by photonic crystal," Progress In Electromagnetics Research M, Vol. 12, 115-130, 2010.
doi:10.2528/PIERM10012604

5. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, No. 20, 201104(R), 2002.

6. Centeno, E. and D. Cassagne, "Graded photonic crystals," Opt. Lett., Vol. 30, No. 17, 2278-2280, 2005.
doi:10.1364/OL.30.002278

7. Kurt, H. and D. S. Citrin, "Graded index photonic crystals," Opt. Exp., Vol. 15, No. 3, 1240-1253, 2007.
doi:10.1364/OE.15.001240

8. Lu, M., B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, and T. J. Huang, "Beam aperture modifier and beam deflector using gradient-index photonic crystals," J. Appl. Phys., Vol. 108, No. 10, 103505, 2010, Supplementary material at http://dx.doi.org/10.1063/1.3499630..

9. Ren, K. and X. Ren, "Controlling light transport by using a graded photonic crystal," Appl. Opt., Vol. 50, No. 15, 2152-2157, 2011.
doi:10.1364/AO.50.002152

10. Wang, H.-W. and L.-W. Chen, "A cylindrical optical black hole using graded index photonic crystals," J. Appl. Phys., Vol. 109, No. 10, 103104, 2011.

11. Vasi, B. and R. Gaji, "Self-focusing media using graded photonic crystals: Focusing, fourier transforming and imaging, directive emission, and directional cloaking," J. Appl. Phys., Vol. 110, No. 5, 053103, 2011.

12. AbdelMalek, F., W. Belhadj, S. Haxha, and H. Bouchriha, "Realization of a high coupling effciency by employing a concave lens based on two-dimensional photonic crystals with a negative refractive index," J. Lightw. Technol., Vol. 25, No. 10, 3168-3174, 2007.
doi:10.1109/JLT.2007.904027

13. Chien, H.-T., C. Lee, H.-K. Chiu, K.-C. Hsu, C.-C. Chen, J. A. Ho, and C. Chou, "The Comparison between the graded photonic crystal coupler and various couplers," J. Lightw. Technol., Vol. 27, No. 14, 2570-2574, 2009.
doi:10.1109/JLT.2008.2012271

14. Cakmak, A. O., E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, "High effciency of graded index photonic crystal as an input coupler," J. Appl. Phys., Vol. 105, No. 14, 103708, 2009.

15. Moore, D. T., "Gradient-index optics: A review," Appl. Opt., Vol. 19, No. 7, 1035-1038, 1980.
doi:10.1364/AO.19.001035

16. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis," Opt. Exp., Vol. 8, No. 3, 173-190, 2001, http:/abinitio.mit.edu/mpb..
doi:10.1364/OE.8.000173

17. Sakoda, K., Opitcal Properties of Photonic Crystals, Chapter 2.5, 30-34, Springer, 2005.

18. Chen, C.-L., Foundations for Guided-wave Optics, Chapter 9, 226, Wiley, 2007.

19. Roux, F. S. and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B., Vol. 74, No. 11, 113103, 2006.

20., , More information can be found at http://www.cst.com..

21. Taflove, A. and S. C. Hagness, "Computational Electrodynamics the Finite-difference Time-domain Method,", 273-327, Artech House, Boston, 2005.

22. Whiteman, J. R., The Mathematics of Finite Elements and Applications, John Wiley and Sons, Chichester, 1998, http://www.comsol.com..

23. Jarvis, J. B., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336

24. Johnson, S. G., S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B, Vol. 60, No. 8, 5751-5758, 1999.
doi:10.1103/PhysRevB.60.5751

25. Yogesh, N. and V. Subramanian, "Directional Cloaking Formed by Photonic Crystal Waveguides," accepted for presentation in International Microwave Symposium 2012, Montreal, Canada, Jun. 16-21, 2012.