1. Ashkin, A., J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics Letters, Vol. 11, No. 5, 288-290, 1986.
doi:10.1364/OL.11.000288 Google Scholar
2. Roichman, Y., B. Sun, A. Stolarski, and D. G. Grier, "Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability," Physical Review Letters, Vol. 101, No. 12, 128301(1-4), 2008. Google Scholar
3. MacDonald, M. P., G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature, Vol. 426, 421-424, 2003.
doi:10.1038/nature02144 Google Scholar
4. Eriksson, E., J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers fo analyzing rapid and reversible cytological alterations in single cells upon environmental changesr," Lab on a Chip, Vol. 7, 71-76, 2007.
doi:10.1039/b613650h Google Scholar
5. Yang, A. H. J., S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature, Vol. 457, 71-75, 2009.
doi:10.1038/nature07593 Google Scholar
6. Mandal, S., X. Serey, and D. Eickson, "Nanomanipulation using silicon photonic crystal resonators," Nano Letters, Vol. 10, 99-104, 2010.
doi:10.1021/nl9029225 Google Scholar
7. Roichman, Y., B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Physical Review Letters, Vol. 100, No. 1, 013602(1-4) 2008. Google Scholar
8. Karásek, V., T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range one-dimensional longitu-dinal optical binding," Physical Review Letters, Vol. 101, No. 14, 143601(1-4), 2008. Google Scholar
9. Albaladejo, S., M. I. Marqués, M. Laroche, and J. J. Sáenz, "Scattering forces from the curl of the spin angular momentum of a light field," Physical Review Letters, Vol. 102, No. 11, 113602(1-4), 2009. Google Scholar
10. Ng, J., Z. F. Lin, and C. T. Chan, "Theory of optical trapping by an optical vortex beam," Physical Review Letters, Vol. 104, No. 10, 103601(1-4), 2010. Google Scholar
11. Novitsky, A., C. W. Qiu, and H. F. Wang, "Single gradientless light beam drags particles as tractor beams," Physical Review Letters, Vol. 107, No. 20, 203601(1-4), 2011. Google Scholar
12. Novotny, L., R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Physical Review Letters, Vol. 79, No. 4, 645-648, 1997.
doi:10.1103/PhysRevLett.79.645 Google Scholar
13. Quidant, R., D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Optics Letters, Vol. 30, No. 9, 1009-1011, 2005.
doi:10.1364/OL.30.001009 Google Scholar
14. Xu, H. and M. Kall, "Surface-plasmon-enhanced optical forces in silver nanoaggregates," Physical Review Letters, Vol. 89, No. 24, 246802(1-4), 2002. Google Scholar
15. Ishikawa, A., S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, "Deep subwavelength terahertz waveguides using gap magnetic plasmon," Physical Review Letters, Vol. 102, No. 4, 043904(1-4), 2009. Google Scholar
16. Choi, H., D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, "Compressing surface plasmons for nano-scale optical focusing," Optics Express, Vol. 17, No. 9, 7519-7524, 2009.
doi:10.1364/OE.17.007519 Google Scholar
17. Nome, R. A., M. J. Guffey, N. F. Scherer, and S. K. Gray, "Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers," The Journal of Physical Chemistry A, Vol. 113, No. 16, 4408-4415, 2009.
doi:10.1021/jp811068j Google Scholar
18. Woolf, D., M. Loncar, and F. Capasso, "The forces from coupled surface plasmon polaritons in planar waveguides," Optics Express, Vol. 17, No. 22, 19996-20011, 2009.
doi:10.1364/OE.17.019996 Google Scholar
19. Ambrosio, L. A. and H. E. Hernández-Figueroa, "Fundamentals of negative refractive index optical trapping: Forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory," Biomedical Optics Express, Vol. 1, 1284-1301, 2010.
doi:10.1364/BOE.1.001284 Google Scholar
20. Ambrosio, L. A. and H. E. Hernández-Figueroa, "Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary bessel beams," Applied Optics, Vol. 50, 4489-4498, 2011.
doi:10.1364/AO.50.004489 Google Scholar
21., Ambrosio, L. A. and H. E. Hernández-Figueroa, "Spin angular momentum transfer from plane waves and azimuthally symmetric focused beams to negative refractive index spherical particles," Biomedical Optics Express, Vol. 2, 2354-2363, 2011.
doi:10.1364/BOE.2.002354 Google Scholar
22. Ploschner, M., M. Mazilu, T. F. Krauss, and K. Dholakia, "Optical forces near a nanoantenna," Journal of Nanophotonics, Vol. 4, 041570(1-13), 2010. Google Scholar
23. Grigorenko, A. N., N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photonics, Vol. 2, 365-370, 2008.
doi:10.1038/nphoton.2008.78 Google Scholar
24. Righini, M., P. Ghenuche, S. Cherukulappurath, V. Myroshny-chenko, F. J. Garcia de Abajo, and R. Quidant, "Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas," Nano Letters, Vol. 9, No. 10, 3387-3391, 2009.
doi:10.1021/nl803677x Google Scholar
25. Tsuboi, Y., T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, "Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon," The Journal of Physical Chemistry Letters, Vol. 1, No. 15, 2327-2333, 2010.
doi:10.1021/jz100659x Google Scholar
26. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting," Nano Letters, Vol. 12, No. 2, 796-801, 2012.
doi:10.1021/nl203811q Google Scholar
27. Chen, H., L. Ran, J. Huangfu, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
doi:10.2528/PIER04051201 Google Scholar
28. Chen, H. S., L. Huang, and X. X. Cheng, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011. Google Scholar
29. Zhang, S., W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Optics Express, Vol. 13, No. 13, 4922-4930, 2005.
doi:10.1364/OPEX.13.004922 Google Scholar
30. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Physical Review Letters, Vol. 95, No. 13, 137404(1-4), 2005. Google Scholar
31. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," Journal of the Optical Society of America B, Vol. 23, No. 3, 434-438, 2006.
doi:10.1364/JOSAB.23.000434 Google Scholar
32. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Physical Review B, Vol. 77, 195328(1-8), 2008. Google Scholar
33. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709 Google Scholar
34. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
35. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502 Google Scholar
36. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011. Google Scholar
37. Xu, S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011. Google Scholar
38. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by Lc-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507 Google Scholar
39. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304 Google Scholar
40. Navarro-Cia, M., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105 Google Scholar
41. Araujo, M. G., J. M. Taboada, J. Rivero, and F. Obelleiro, "Comparison of surface integral equations for left-handed materials," Progress In Electromagnetics Research, Vol. 118, 425-440, 2011.
doi:10.2528/PIER11031110 Google Scholar
42. Giamalaki, M. I. and I. S. Karanasiou, "Enhancement of a microwave radiometry imaging system's performance using left handed materials," Progress In Electromagnetics Research, Vol. 117, 253-265, 2011. Google Scholar
43. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011. Google Scholar
44. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011. Google Scholar
45. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011. Google Scholar
46. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
47. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
48. Choi, J. and C. Seo, "High-effciency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609 Google Scholar
49. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Physical Review Letters, Vol. 106, No. 6, 067402(1-4), 2011. Google Scholar
50. Zhao, R., P. Tassin, T. Koschny, and C. M. Soukoulis, "Optical forces in nanowire pairs and metamaterials," Optics Express, Vol. 18, No. 25, 25665-25676, 2010.
doi:10.1364/OE.18.025665 Google Scholar
51. Zhang, J., K. F. MacDonald, and N. I. Zheludev, "Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces," Physical Review B, Vol. 85, No. 20, 205123(1-5), 2012. Google Scholar
52. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
53. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
54. Simovski, C. R., "Bloch material parameters of magnetodielectric metamaterials and the concept of Bloch lattices," Metamaterials, Vol. 1, 62-80, 2007.
doi:10.1016/j.metmat.2007.09.002 Google Scholar
55. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coeffcients," Physical Review B, Vol. 65, No. 19, 195104(1-5), 2002. Google Scholar
56. Hao, J., L. Zhou, and M. Qiu, "Nearly total absorption of light and heat generation by plasmonic metamaterials," Physical Review B, Vol. 83, No. 16, 165107(1-12), 2011. Google Scholar