1. Wax, M. and Y. Anu, "Performance analysis of the minimum variance beamformer," IEEE Trans. Signal Process., Vol. 44, No. 4, 928-937, Apr. 1996.
doi:10.1109/78.492545 Google Scholar
2. Chang, L. and C.-C. Yeh, "Performance of DMI and eigenspace-based beamformers," IEEE Trans. Antennas Propag., Vol. 40, No. 11, 1336-1347, Nov. 1992.
doi:10.1109/8.202711 Google Scholar
3. Reed, I. S., J. D. Mallett, and L. E. Brennan, "Rapid convergence rate in adaptive arrays," IEEE Trans. Aerosp. Electron. Syst., Vol. 10, No. 6, 853-863, Nov. 1974.
doi:10.1109/TAES.1974.307893 Google Scholar
4. Widrow, B., K. M. Duvall, R. P. Gooch, and W. C. Newman, "Signal cancellation phenomena in adaptive antennas: Causes and cures ," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 469-478, May 1982.
doi:10.1109/TAP.1982.1142804 Google Scholar
5. Haimovich, A. M. and Y. Bar-Ness, "An eigenanalysis interference canceler," IEEE Trans. Signal Process., Vol. 39, No. 1, 76-84, Jan. 1991.
doi:10.1109/78.80767 Google Scholar
6. Choi, Y.-H., "Performance improvement of adaptive arrays with signal blocking," IEICE Trans. Comm., Vol. E86-B, No. 8, 2553-2557, Aug. 2003. Google Scholar
7. Choi, Y.-H., "Signal-blocking-based adaptive beamformer with simple direction error correction," Electron. Lett., Vol. 40, No. 8, 463-464, Apr. 2004.
doi:10.1049/el:20040314 Google Scholar
8. Lee, J.-H. and C.-C. Lee, "Analysis of the performance and sensitivity of an eigenspace-based interference canceler," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 826-835, May 2000.
doi:10.1109/8.855503 Google Scholar
9. Lee, J.-H. and Y.-H. Lee, "Two-dimensional adaptive array beamforming with multiple beam constraints using a generalized sidelobe canceller," IEEE Trans. Signal Process.,, Vol. 53, No. 9, 3517-3529, Sep. 2005.
doi:10.1109/TSP.2005.853155 Google Scholar
10. Choi, Y.-H., "Duvall-structure-based fast adaptive beamforming for coherent interference cancellation," IEEE Signal Process. Lett., Vol. 14, No. 10, 739-741, Oct. 2007.
doi:10.1109/LSP.2007.898322 Google Scholar
11. Yu, L., W. Liu, and R. Langley, "SINR analysis of the subtraction-based SMI beamformer IEEE Trans. Signal Process.,", Vol. 58, No. 11, 5926-5932, Nov. 2010. Google Scholar
12. Steinhardt, A. O., "The PDF of adaptive beamforming weights," IEEE Trans. Signal Process., Vol. 39, No. 5, 1232-1235, May 1991.
13. Richmond, C. D., "PDF's confidence regions, and relevant statistics for a class of sample covariance-based array processors," IEEE Trans. Signal Process., Vol. 44, No. 7, 1779-1793, Jul. 1996.
doi:10.1109/78.510624 Google Scholar
14. Frost, O. L., "An algorithm for linearly constrained adaptive array processing," Proc. IEEE, Vol. 60, No. 8, 926-935, Aug. 1972.
doi:10.1109/PROC.1972.8817 Google Scholar
15. Li, R., X. Zhao, and X. W. Shi, "Derivative constrained robust LCMV beamforming algorithm," Progress In Electromagnetics Research C, Vol. 4, 43-52, 2008. Google Scholar
16. Li, Y., Y. J. Gu, Z. G. Shi, and K. S. Chen, "Robust adaptive beamforming based on particle filter with noise unknown," Progress In Electromagnetics Research, Vol. 90, 151-169, 2009.
doi:10.2528/PIER09010302 Google Scholar
17. Griffiths, L. J. and C. W. Jim, "An alternative approach to linearly constrained adaptive beamforming," IEEE Trans. Antennas Propag., Vol. 30, No. 1, 27-34, Jan. 1982.
doi:10.1109/TAP.1982.1142739 Google Scholar
18. Trim, D., Calculus for Engineers, Prentice Hall, Toronto, 2008.
19. Sominskii, I. S., The Method of Mathematical Induction, Pergamon, London, 1961.
20. Larson, R., B. H. Edwards, and D. C. Falvo, Elementary Linear Algebra, Brooks Code, CA, 2009.
21. Miller, K. S. and J. B. Walsh, Elementary and Advanced Trigonometry, 212-215, Harper & Brothers, New York, 1962.
22. Jordan, C., Calculus of Finite Differences, 100-107, Chelsea, New York, 1947.