Vol. 130
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-17
Finite Data Performance Analysis of Lcmv Antenna Array Beamformers with and Without Signal Blocking
By
Progress In Electromagnetics Research, Vol. 130, 281-317, 2012
Abstract
A linearly constrained minimum variance (LCMV) antenna array beamformer using finite data samples suffers from slow convergence when the received array data contain the desired signal. It has been reported that signal blocking techniques speed up the convergence rate and increase the robustness of LCMV antenna array beamformers. However, the reason of this improvement has not been explored in the literature. Moreover, the existing formulas for the output signal-to-interference-plus-noise ratio (SINR) are too rough to realize the influence of signal blocking techniques on the performance. In this paper, we show that the correlation due to finite samples causes the redundant component (termed as the cross weight) embedded in the weight vector of a LCMV beamformer even if the signal sources and noise are independent. The cross power results from the cross weight degrades the performance when the sample size is small. In contrast, the cross weight and cross power can be fully eliminated when a signal blocking technique is used. The theoretical results presented in this paper provide a comprehensive description on the effectiveness and the price of using signal blocking for antenna array beamforming. Simulation results are also given for confirming the validity of the theoretical results.
Citation
Yen Lin Chen Ju-Hong Lee , "Finite Data Performance Analysis of Lcmv Antenna Array Beamformers with and Without Signal Blocking," Progress In Electromagnetics Research, Vol. 130, 281-317, 2012.
doi:10.2528/PIER12050402
http://www.jpier.org/PIER/pier.php?paper=12050402
References

1. Wax, M. and Y. Anu, "Performance analysis of the minimum variance beamformer," IEEE Trans. Signal Process., Vol. 44, No. 4, 928-937, Apr. 1996.
doi:10.1109/78.492545

2. Chang, L. and C.-C. Yeh, "Performance of DMI and eigenspace-based beamformers," IEEE Trans. Antennas Propag., Vol. 40, No. 11, 1336-1347, Nov. 1992.
doi:10.1109/8.202711

3. Reed, I. S., J. D. Mallett, and L. E. Brennan, "Rapid convergence rate in adaptive arrays," IEEE Trans. Aerosp. Electron. Syst., Vol. 10, No. 6, 853-863, Nov. 1974.
doi:10.1109/TAES.1974.307893

4. Widrow, B., K. M. Duvall, R. P. Gooch, and W. C. Newman, "Signal cancellation phenomena in adaptive antennas: Causes and cures ," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 469-478, May 1982.
doi:10.1109/TAP.1982.1142804

5. Haimovich, A. M. and Y. Bar-Ness, "An eigenanalysis interference canceler," IEEE Trans. Signal Process., Vol. 39, No. 1, 76-84, Jan. 1991.
doi:10.1109/78.80767

6. Choi, Y.-H., "Performance improvement of adaptive arrays with signal blocking," IEICE Trans. Comm., Vol. E86-B, No. 8, 2553-2557, Aug. 2003.

7. Choi, Y.-H., "Signal-blocking-based adaptive beamformer with simple direction error correction," Electron. Lett., Vol. 40, No. 8, 463-464, Apr. 2004.
doi:10.1049/el:20040314

8. Lee, J.-H. and C.-C. Lee, "Analysis of the performance and sensitivity of an eigenspace-based interference canceler," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 826-835, May 2000.
doi:10.1109/8.855503

9. Lee, J.-H. and Y.-H. Lee, "Two-dimensional adaptive array beamforming with multiple beam constraints using a generalized sidelobe canceller," IEEE Trans. Signal Process.,, Vol. 53, No. 9, 3517-3529, Sep. 2005.
doi:10.1109/TSP.2005.853155

10. Choi, Y.-H., "Duvall-structure-based fast adaptive beamforming for coherent interference cancellation," IEEE Signal Process. Lett., Vol. 14, No. 10, 739-741, Oct. 2007.
doi:10.1109/LSP.2007.898322

11. Yu, L., W. Liu, and R. Langley, "SINR analysis of the subtraction-based SMI beamformer IEEE Trans. Signal Process.,", Vol. 58, No. 11, 5926-5932, Nov. 2010.

12. Steinhardt, A. O., The PDF of adaptive beamforming weights, IEEE Trans. Signal Process., Vol. 39, No. 5, 1232-1235, May 1991.

13. Richmond, C. D., "PDF's confidence regions, and relevant statistics for a class of sample covariance-based array processors," IEEE Trans. Signal Process., Vol. 44, No. 7, 1779-1793, Jul. 1996.
doi:10.1109/78.510624

14. Frost, O. L., "An algorithm for linearly constrained adaptive array processing," Proc. IEEE, Vol. 60, No. 8, 926-935, Aug. 1972.
doi:10.1109/PROC.1972.8817

15. Li, R., X. Zhao, and X. W. Shi, "Derivative constrained robust LCMV beamforming algorithm," Progress In Electromagnetics Research C, Vol. 4, 43-52, 2008.

16. Li, Y., Y. J. Gu, Z. G. Shi, and K. S. Chen, "Robust adaptive beamforming based on particle filter with noise unknown," Progress In Electromagnetics Research, Vol. 90, 151-169, 2009.
doi:10.2528/PIER09010302

17. Griffiths, L. J. and C. W. Jim, "An alternative approach to linearly constrained adaptive beamforming," IEEE Trans. Antennas Propag., Vol. 30, No. 1, 27-34, Jan. 1982.
doi:10.1109/TAP.1982.1142739

18. Trim, D., Calculus for Engineers, Prentice Hall, Toronto, 2008.

19. Sominskii, I. S., The Method of Mathematical Induction, Pergamon, London, 1961.

20. Larson, R., B. H. Edwards, and D. C. Falvo, Elementary Linear Algebra, Brooks Code, CA, 2009.

21. Miller, K. S. and J. B. Walsh, Elementary and Advanced Trigonometry, 212-215, Harper & Brothers, New York, 1962.

22. Jordan, C., Calculus of Finite Differences, 100-107, Chelsea, New York, 1947.