1. Dolin, L., "About the possibility of three-dimensional electromagnetic systems with inhomogeneous anisotropic filling," Izvestiya Vuzov: Radiophysics, Vol. 4, 964-967, 1961. Google Scholar
2. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," J. Mod. Opt., Vol. 43, 773-793, 1996.
doi:10.1080/09500349608232782 Google Scholar
3. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1783, 2006.
doi:10.1126/science.1125907 Google Scholar
4. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493 Google Scholar
5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
6. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3 Google Scholar
7. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, Mineola, 2010.
8. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621 Google Scholar
9. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, 9794-9804, 2006.
doi:10.1364/OE.14.009794 Google Scholar
10. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photonics, Vol. 3, 461-463, 2009.
doi:10.1038/nphoton.2009.117 Google Scholar
11. Qiu, C.-W., L. Hu, B. Zhang, B.-I. Wu, S. G. Johnson, and J. D. Joannopoulos, "Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings," Opt. Express, Vol. 17, 13467-13478, 2009.
doi:10.1364/OE.17.013467 Google Scholar
12. Kwon, D. and D. H. Werner, "Two-dimensional eccentric elliptic electromagnetic cloaks," Appl. Phys. Lett., Vol. 92, 013505, 2008.
doi:10.1063/1.2830698 Google Scholar
13. Yan, M., W. Yan, and M. Qiu, "Invisibility cloaking by coordinate transformation," Prog. Opt., Vol. 52, 261-304, 2009.
doi:10.1016/S0079-6638(08)00006-1 Google Scholar
14. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28 Google Scholar
15. Kildishev, A. V., W. Cai, U. K. Chettiar, and V. M. Shalaev, "Transformation optics: Approaching broadband electromagnetic cloaking," New J. Phys., Vol. 10, 115029, 2008.
doi:10.1088/1367-2630/10/11/115029 Google Scholar
16. Kildishev, A. V. and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett., Vol. 33, 43-45, 2008.
doi:10.1364/OL.33.000043 Google Scholar
17. Nicolet, A., F. Zolla, and S. Guenneau, "Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section," Opt. Lett., Vol. 33, 1584-1586, 2008.
doi:10.1364/OL.33.001584 Google Scholar
18. Greanleaf, A., Y. Kurilev, M. Lassas, and G. Uhlmann, "Invisibility and inverse problems," Bulletin of the Americam Mathematical Society, Vol. 46, 55-97, 2009.
doi:10.1090/S0273-0979-08-01232-9 Google Scholar
19. Luo, Y., H. Chen, J. Zhang, L. Ran, and J. A. Kong, "Design and analytical fullwave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Phys. Rev. B, Vol. 77, 125127, 2008.
doi:10.1103/PhysRevB.77.125127 Google Scholar
20. Zharova, N. A., I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, "Ideal and nonideal invisibility cloaks," Opt. Express, Vol. 16, 21369-21374, 2008.
doi:10.1364/OE.16.021369 Google Scholar
21. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461 Google Scholar
22. Urzhumov, Y. A. and D. R. Smith, "Transformation optics with photonic band gap media," Phys. Rev. Lett., Vol. 105, 163901, 2010.
doi:10.1103/PhysRevLett.105.163901 Google Scholar
23. Han, T., C. Qiu, and X. Tang, "An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation," J. Opt., Vol. 12, 095103, 2010.
doi:10.1088/2040-8978/12/9/095103 Google Scholar
24. Tuniz, A., B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, "Weaving the invisible thread: Design of an optically invisible metamaterial fibre," Opt. Express, Vol. 18, 18095-18105, 2010.
doi:10.1364/OE.18.018095 Google Scholar
25. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photon. Nanostruct.: Fundam. Applic., Vol. 6, 87, 2008.
doi:10.1016/j.photonics.2007.07.013 Google Scholar
26. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
doi:10.1063/1.2748302 Google Scholar
27. Lai, Y., H. Chen, Z.-Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, 093901, 2009.
doi:10.1103/PhysRevLett.102.093901 Google Scholar
28. Lai, Y., J. Ng, H. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, "Illusion optics: The optical transformation of an object into another object," Phys. Rev. Lett., Vol. 102, 253902, 2009.
doi:10.1103/PhysRevLett.102.253902 Google Scholar
29. Li, C., X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, "Experimental realization of a circuit-based broadband illusionoptics analogue," Phys. Rev. Lett., Vol. 105, 233906, 2010.
doi:10.1103/PhysRevLett.105.233906 Google Scholar
30. Schultheiss, V. H., S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tunnermann, S. Longhi, and U. Peschel, "Optics in curved space," Phys. Rev. Lett., Vol. 105, 143901, 2010.
doi:10.1103/PhysRevLett.105.143901 Google Scholar
31. Luo, Y., L.-X. He, Y. Wang, H. L. W. Chan, and S.-Z. Zhu, "Changing the scattering of sheltered targets," Phys. Rev. A, Vol. 83, 043809, 2011.
doi:10.1103/PhysRevA.83.043809 Google Scholar
32. Han, T., C.-W. Qiu, and X. Tang, "Distributed external cloak without embedded antiobjects," Opt. Lett., Vol. 35, 2642-2644, 2010.
doi:10.1364/OL.35.002642 Google Scholar
33. Jiang, W. X., T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, "Cylindrical-to-plane-wave conversion via embedded optical transformation," Appl. Phys. Lett., Vol. 92, 261903, 2008.
doi:10.1063/1.2953447 Google Scholar
34. Ward, A. J. and J. B. Pendry, "Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method," Phys. Rev. B, Vol. 58, 7252-7259, 1998.
doi:10.1103/PhysRevB.58.7252 Google Scholar
35. Shyroki, D. M., "Note on transformation to general curvilinear coordinates for Maxwell's curl equations," , 2003, Preprint, arXiv:physics/0307029v2 .
doi:10.1109/LMWC.2006.884768 Google Scholar
36. Shyroki, D. M., "Squeezing of open boundaries by Maxwell-consistent real coordinate transformation," IEEE Microwave and Wireless Components Letters, Vol. 16, 576-578, 2006.
doi:10.1109/TMTT.2007.897841 Google Scholar
37. Shyroki, D. M., "Efficient Cartesian-grid-based modeling of rotationally symmetric bodies," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1132-1138, 2007.
doi:10.1109/TMTT.2007.914637 Google Scholar
38. Shyroki, D. M., "Exact equivalent straight waveguide model for bent and twisted waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 414-419, 2008.
doi:10.1088/1367-2630/10/11/115033 Google Scholar
39. Smolyaninov, I. I., "Transformational optics of plasmonic metamaterials," New J. Phys., Vol. 10, 115033, 2008.
doi:10.1021/nl100800c Google Scholar
40. Huidobro, P. A., M. L. Nesterov, L. Martin-Moreno, and F. J. Garca-Vidal, "Transformation optics for plasmonics," Nano Lett., Vol. 10, 1985-1890, 2010.
doi: --- Either ISSN or Journal title must be supplied. Google Scholar
41. Liu, Y., T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmonics," Nano Lett., Vol. 10, 1991-1997, 2010.
doi:10.1364/OE.18.012027 Google Scholar
42. Kadic, M., S. Guenneau, and S. Enoch, "Transformational plasmonics: Cloak, concentrator and rotator," Opt. Express, Vol. 18, 12027-12032, 2010.
doi:10.1103/PhysRevLett.105.233901 Google Scholar
43. Aubry, A., D. Y. Lei, S. A. Maier, and J. B. Pendry, "Interaction between plasmonic nanoparticles revisited with transformation optics," Phys. Rev. Lett., Vol. 105, 233901, 2010.
doi:10.1088/1367-2630/9/3/045 Google Scholar
44. Cummer, S. A. and D. Schurig, "One path to acoustic cloaking," New J. Phys., Vol. 9, 45, 2007.
doi:10.1088/0022-3727/43/11/113001 Google Scholar
45. Chen, H. and C. T. Chan, "Acoustic cloaking and transformation acoustics," J. Phys. D, Vol. 43, 113001, 2010.
doi:10.1103/PhysRevLett.101.134501 Google Scholar
46. Farhat, M., S. Enoch, S. Guenneau, and A. B. Movchan, "Broadband cylindrical acoustic cloak for linear surface waves in a fluid," Phys. Rev. Lett., Vol. 101, 134501, 2008.
doi:10.1103/PhysRevLett.106.253901 Google Scholar
47. Popa, B.-I., L. Zigoneanu, and S. A. Cummer, "Experimental acoustic ground cloak in air," Phys. Rev. Lett., Vol. 106, 253901, 2011.
doi:10.1063/1.3068749 Google Scholar
48. Alitalo, P., F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, "Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks," Appl. Phys. Lett., Vol. 94, 014103, 2009.
doi:10.1103/PhysRevLett.103.103905 Google Scholar
49. Tretyakov, S., P. Alitalo, O. Luukkonen, and C. Simovski, "Broadband electromagnetic cloaking of long cylindrical objects," Phys. Rev. Lett., Vol. 103, 103905, 2009.
doi:10.1126/science.1166949 Google Scholar
50. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009. Google Scholar
51. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun., Vol. 1, 21, 2010.
doi:10.1038/ncomms1176 Google Scholar
52. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nat. Commun., Vol. 2, 176, 2011.
doi:10.1103/PhysRevLett.106.033901 Google Scholar
53. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisible cloak for visible light," Phys. Rev. Lett., Vol. 106, 033901, 2011.
doi:10.1103/PhysRevLett.102.213901 Google Scholar
54. Smolyaninov, I. I., V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, "Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking," Phys. Rev. Lett., Vol. 102, 213901, 2009.
doi:10.1126/science.1186351 Google Scholar
55. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337, 2010.
doi:10.1364/OL.36.002059 Google Scholar
56. Fischer, J., T. Ergin, and M. Wegener, "Three-dimensional polarization-independent visible-frequency carpet invisibility cloak," Opt. Lett., Vol. 36, 2059-2061, 2011.
doi:10.1088/1464-4258/11/1/015104 Google Scholar
57. Collins, P. and J. McGuirk, "A novel methodology for deriving improved material parameter sets for simplified cylindrical cloaks," J. Opt. A: Pure Appl., Vol. 11, 015104, 2009.
doi:10.1063/1.3026532 Google Scholar
58. Jiang, W. X., T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, "Invisibility cloak without singularity," Appl. Phys. Lett., Vol. 93, 194102, 2008.
doi:10.1063/1.3168652 Google Scholar
59. Hu, J., X. Zhou, and G. Hu, "Nonsingular two dimensional cloak of arbitrary shape," Appl. Phys. Lett., Vol. 95, 011107, 2009.
doi:10.1103/PhysRevLett.99.233901 Google Scholar
60. Yan, M., Z. Chao, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Phys. Rev. Lett., Vol. 99, 233901, 2007.
doi:10.1103/PhysRevLett.101.203901 Google Scholar
61. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1364/JOSAB.28.000922 Google Scholar
62. Huang, L., D. Zhou, J. Wang, Z. Li, X. Chen, and W. Lu, "Generalized transformation for nonmagnetic invisibility cloak with minimized scattering," J. Opt. Soc. Am. B, Vol. 28, 922-928, 2011.
doi:10.1364/OE.18.013038 Google Scholar
63. Han, T. and C.-W. Qiu, "Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks," Opt. Express, Vol. 18, 13038-13043, 2010.
doi:10.1103/PhysRevLett.99.063903 Google Scholar
64. Chen, Chen, B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1088/1367-2630/11/11/113001 Google Scholar
65. Novitsky, A., C.-W. Qiu, and S. Zouhdi, "Transformation-based spherical cloaks designed by an implicit transformation-independent method: Theory and optimization," New J. Phys., Vol. 11, 113001, 2009.
doi:10.1103/PhysRevE.80.016604 Google Scholar
66. Qiu, C.-W., A. Novitsky, H. Ma, and S. Qu, "Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks," Phys. Rev. E, Vol. 80, 016604, 2009.
doi:10.1103/PhysRevE.72.016623 Google Scholar
67. Alu, A. and N. Engheta, "Achiving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
doi:10.1088/1367-2630/14/1/013054 Google Scholar
68. Rainwater, D., A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, "Experimental verification of three-dimensional plasmonic cloaking in free-space," New J. Phys., Vol. 14, 013054, 2012.
doi:10.1103/PhysRevLett.102.233901 Google Scholar
69. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, 2009.
doi:10.1088/1367-2630/10/11/115028 Google Scholar
70. Tretyakov, S. A., I. S. Nefedov, and P. Alitalo, "Generalized field-transforming metamaterials," New J. Phys., Vol. 10, 115028, 2008.
doi:10.1088/1367-2630/10/11/115022 Google Scholar
71. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022, 2008.
doi:10.1088/2040-8978/13/3/035104 Google Scholar
72. Novitsky, A. V., "Inverse problem in transformation optics," J. Opt., Vol. 13, 035104, 2011.
doi:10.1103/PhysRevLett.58.1499 Google Scholar
73. Durnin, J., J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, 1499-1504, 1987.
doi:10.1103/PhysRevLett.99.213901 Google Scholar
74. Siviloglou, G. A., J. Broky, A. Dogariu, and D. N. Christodoulides, "Observation of accelerating Airy beams," Phys. Rev. Lett., Vol. 99, 213901, 2007.
doi:10.1088/2040-8978/13/2/024003 Google Scholar
75. McCall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," J. Opt., Vol. 13, 024003, 2011.
doi:10.1088/2040-8978/13/2/024007 Google Scholar
76. Cummer, S. A. and R. T. Thompson, "Frequency conversion by exploiting time in transformation optics," J. Opt., Vol. 13, 024007, 2011.
doi:10.1038/nature10695 Google Scholar
77. Fridman, M., A. Farsi, Y. Okawachi, and A. L. Gaeta, "Demonstration of temporal cloaking," Nature, Vol. 481, 62-65, 2012.
doi:10.1364/JOSAB.28.001082 Google Scholar
78. , , , http://www.comsol.com/.
doi:10.1088/2040-8978/13/7/075103
79. Zang, Zang and C. Jiang, "A rotatable and amplifying optical transformation device," J. Opt. Soc. Am. B, Vol. 28, 1082-1087, 2011. Google Scholar
80. Perczel, J., C. Garcia-Meca, and U. Leonhardt, "Partial transmutation of singularities in optical instruments," J. Opt., Vol. 13, 075103, 2011. Google Scholar
81. Fedorov, F. I., Optics of Anisotropic Media, Izdatelstvo AN BSSR, Minsk, 1958.
82. Fedorov, F. I., Theory of Gyrotropy, Nauka i Tehnika, Minsk, 1976.
83. Fedorov, F. I. and V. V. Filippov, Reflection and Transmission of Light by Transparent Crystals, Nauka i Tehnika, Minsk, 1976.
84. Fedorov, F. I., Theory of Elastic Waves in Crystals, Plenum Press, New York, 1968.
85. Fedorov, F. I., Lorentz Group, Nauka, Moscow, 1979.
doi:10.1103/PhysRevD.5.787
86. Fedorov, F. I., "To the theory of total reflection," Doklady Akademii Nauk SSSR, Vol. 105, 465-469, 1955.
doi:10.1103/PhysRevLett.93.083901 Google Scholar
87. Imbert, C., "Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam," Phys. Rev. D, Vol. 5, 787-796, 1972. Google Scholar
88. Onoda, M., S. Murakami, and N. Nagaosa, "Hall effect of light," Phys. Rev. Lett., Vol. 93, 083901, 2004. Google Scholar
89. Serdyukov, A. N., I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.
doi: --- Either ISSN or Journal title must be supplied.
90. Post, E. J., Formal Structure of Electromagnetics, Noth-Holland Publishing Company, Amsterdam, 1962.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.