Vol. 129
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-07-16
Performance Analysis of Polarization-Space-Time Three-Domain Joint Processing for Clutter Suppression in Airborne Radar
By
Progress In Electromagnetics Research, Vol. 129, 579-601, 2012
Abstract
An optimum polarization-space-time joint domain processing (PST-JDP) technique is proposed for clutter suppression which adequately adopts the three-domain information including the polarization, space and Doppler frequency information of the radar echo. The study shows that the polarization information together with the space and Doppler frequency information are effective to significantly enhance the clutter suppression performance for airborne radar. Several new techniques, (i.e., the covariance matrix eigendecomposition, the spectral analysis and the resolution grid method), are utilized for deriving the performance of the optimum PST-JDP. The main factors which affect on the performance of clutter rejection are the clutter degree of polarization, statistical distance of polarization between target and clutter, Doppler frequency of target and input clutter-to-noise ratio. The new optimum PST-JDP method outperforms significantly the traditional optimum space-time processing technology, especially in the case of the slowly or tangentially moving target. The simulation verifies the correctness and efficiency of the model.
Citation
Dijun Wu, Zhenhai Xu, Liang Zhang, Ziyuan Xiong, and Shunping Xiao, "Performance Analysis of Polarization-Space-Time Three-Domain Joint Processing for Clutter Suppression in Airborne Radar," Progress In Electromagnetics Research, Vol. 129, 579-601, 2012.
doi:10.2528/PIER12052103
References

1. Liu, Z., X. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.

2. Morin, X., E. Pottier, J. Saillard, C. Pasdeloup, and C. Delhote, "Polarimetric detection of slowly moving targets embedded in stationary ground clutter," Progress In Electromagnetics Research, Vol. 16, 1-33, 1997.
doi:10.2528/PIER95103100

3. Yang, R. Y., H. Kuan, C. Y. Hung, and C. S. Ye, "Design of dualband bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetic Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504

4. Gong, Q. Y. and Z. D. Zhu, "Study STAP algorithm on interference target detect under nonhomogenous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
doi:10.2528/PIER09101502

5. Giuli, D., "Polarization diversity in radars," IEEE Proceeding, Vol. 74, No. 2, 246-249, 1986.

6. Gherardelii, M., D. Giuli, and M. Fossi, "Suboptimum adaptive polarisation cancellers for dual-polarisation radars," IEE Proceeding, Vol. 135, No. 1, 60-72, 1988.

7. Poelman, A. J., "Virtual polarisation adaptation a method of increasing the detection capability of a radar system through polarisation-vector processing," IEE Proc. Commun., Radar & Signal Process., Vol. 128, No. 5, 261-270, 1981.
doi:10.1049/ip-f-1.1981.0044

8. Poelman, A. J., "Polarisation-vector translation in radar systems," IEE Proceeding, Vol. 130, No. 2, 161-166, 1983.

9. Poelman, A. J. and J. R. F. Guy, "Multinotch logic-product polarization suppression filters: A typical design example and its performance in a rain clutter environment," IEE Proceeding, Vol. 131, No. 4, 383-396, 1984.

10. Maio, A. D. and G. Ricci, "A polarimetric adaptive matched filter," Signal Processing, Vol. 81, No. 12, 2583-2589, 2001.
doi:10.1016/S0165-1684(01)00150-5

11. Wang, X. S., Y. L. Chang, D. H. Dai, et al. "Band characteristics of SINR polarization filter," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1148-1154, 2007.
doi:10.1109/TAP.2007.893428

12. Secmen, M. and A. Hizal, "A dual-polarized wide-band patch antenna for indoor mobile communication applications," Progress In Electromagnetics Research, Vol. 100, 189-200, 2010.
doi:10.2528/PIER09112607

13. Moradi, K. and S. Nikmehr, "A dual-band dual-polarized microstrip array antenna for base stations," Progress In Electromagnetic Research, Vol. 123, 527-541, 2012.
doi:10.2528/PIER11111610

14. Chi, L. P., S. S. Bor, S. M. Deng, C.-L. Tsai, P.-H. Juan, and K.-W. Liu, "A wideband wide-strip dipole antenna for circularly polarized wave operations," Progress In Electromagnetics Research, Vol. 100, 69-82, 2010.
doi:10.2528/PIER09112201

15. Novak, L. M., M. C. Burl, and W. W. Irving, "Optimal polarimetric processing for enhanced target detection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, 234-244, 1993.
doi:10.1109/7.249129

16. Hurtado, M. and A. Nehorai, "Polarimetric detection of targets in heavy inhomogeneous clutter," IEEE Transactions on Signal Processing, Vol. 56, No. 4, 1349-1361, 2008.
doi:10.1109/TSP.2007.909046

17. Xiao, J. J. and A. Nehorai, "Joint transmitter and receiver polarization optimization for scattering estimation in clutter," IEEE Transactions on Signal Processing, Vol. 57, No. 10, 4142-4147, 2009.
doi:10.1109/TSP.2009.2022887

18. Wang, J. and A. Nehorai, "Adaptive polarimetry design for a target in compound-Gaussian clutter," Signal Processing, Vol. 89, No. 6, 1061-1069, 2009.
doi:10.1016/j.sigpro.2008.12.018

19. Alvarez-Perez, J. L., "Coherence, polarization and statistical independence in Cloude-Pottier's radar polarimetry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 426-441, 2011.
doi:10.1109/TGRS.2010.2056375

20. Klemm, R., "Principles of space-time adaptive processing," IEE Radar Sonar, Navigation and Avionics 12, IEE Press, London, 2002.

21. Xu, Z. H., X. S. Wang, et al. "Filtering performance of polarization sensitive array: Completely polarized case," Acta Electronic Sinica, Vol. 32, No. 8, 1130-1134, 2004.

22. Zhang, X., Y. Shi, and D. Xu, "Novel blind joint direction of arrival and polarization estimation for polarization-sensitive uniform circular array," Progress In Electromagnetics Research, Vol. 86, 19-37, 2008.
doi:10.2528/PIER08082302

23. Peng, H. L., W. Y. Yin, J. F. Mao, D. Huo, X. Hang, and L. Zhou, "A compact dual-polarized broadband antenna with hybrid beam-forming capabilites," Progress In Electromagnetics Research, Vol. 118, 253-271, 2011.
doi:10.2528/PIER11042905

24. Gu, Y.-J., Z.-G. Shi, K. S. Chen, and Y. Li, "Robust adaptive beamforming for steering vector uncertainties based on equivalent DOAs method," Progress In Electromagnetics Research, Vol. 79, 277-290, 2008.
doi:10.2528/PIER07102202

25. Lizzi, L., F. Viani, M. Benedetti, P. Rocca, and A. Massa, "The M-DSO-ESPRIT method for maximum likelihood DOA estimation," Progress In Electromagnetics Research, Vol. 80, 477-497, 2008.
doi:10.2528/PIER07121106

26. Pastina, D., P. Lombardo, and T. Bucciarelli, "Adaptive polarimetric target detection with coherent radar. I: Detection against Gaussian background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 4, 1194-1206, 2001.
doi:10.1109/7.976959

27. Lombardo, P., D. Pastina, and T. Bucciarelli, "Adaptive polarimetric target detection with coherent radar. II: Detection against non-Gaussian background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 4, 1207-1220, 2001.
doi:10.1109/7.976960

28. Brennan, L. E. and I. S. Reed, "Theory of adaptive radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 9, No. 2, 237-252, 1973.
doi:10.1109/TAES.1973.309792

29. Reed, I. S., J. D. Mallett, and L. E. Brennan, "Rapid convergence rate in adaptive arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 10, No. 6, 853-863, 1974.
doi:10.1109/TAES.1974.307893

30. Kelly, E. J., "An adaptive detection algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 22, No. 1, 115-127, 1986.
doi:10.1109/TAES.1986.310745

31. Klemm, R., "Adaptive airborne MTI: An auxiliary channel approach," IEE Processing, Vol. 134, No. 3, 269-276, 1987.

32. Ward, J., "Space-time adaptive processing for airborne radar," , Lincoln Laboratory, Technical Report 1015, 1994.
doi:10.1016/j.sigpro.2011.06.002

33. Wu, J. X., T.Wang, and Z. Bao, "FFT implementation of Doppler dependent pre-Doppler STAP," Signal Processing, Vol. 92, No. 1, 281-287, 2012.
doi:10.1109/TSP.2010.2048212

34. Fa, R., R. C. de Lamare, and L. Wang, "Reduced-rank STAP schemes for airborne radar based on switched joint interpolation, decimation and filtering algorithm," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4182-4194, 2010.
doi:10.1016/j.sigpro.2009.05.029

35. Beau, S. and S. Marcos, "Range dependent clutter rejection using range-recursive space-time adaptive processing (STAP) algorithms," Signal Processing, Vol. 90, No. 1, 57-68, 2010.
doi:10.1016/j.sigpro.2011.04.006

36. Sun, K., H. D. Meng, Y. L. Wang, et al. "Direct data domain STAP using sparse representation of clutter spectrum," Signal Processing, Vol. 91, No. 9, 2222-2226, 2011.
doi:10.1016/j.sigpro.2011.04.008

37. Sun, K., H. D. Meng, F. D. Lapierre, et al. "Registration-based compensation using sparse representation in conformal-array STAP," Signal Processing, Vol. 91, No. 10, 2268-2276, 2011.
doi:10.1109/TSP.2007.914347

38. Stoica, P., J. Li, X. M. Zhu, and J. R. Guerci, "On using a priori knowledge in space-time adaptive processing," IEEE Transactions on Signal Processing, Vol. 56, No. 6, 2598-2602, 2008.
doi:10.1109/TAES.2011.5937270

39. Bidon, S., O. Besson, and J. Y. Tourneret, "Knowledge-aided STAP in heterogeneous clutter using a hierarchical Bayesian algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 3, 1863-1879, 2011.
doi:10.1109/TAES.2011.5705692

40. Wu, Y., J. Tang, and Y. N. Peng, "On the essence of knowledge-aided clutter covariance estimate and its convergence," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 1, 569-585, 2011.
doi:10.1049/ip-rsn:20050018

41. Park, H. R. and H. Wang, "Adaptive polarisation-space-time domain radar target detection in inhomogeneous clutter environments," EE Proceedings Radar, Sonar and Navigation, Vol. 153, No. 1, 35-43, 2006.
doi:10.1016/0165-1684(94)00097-J

42. Park, H. R., J. Li, and H. Wang, "Polarization-space-time domain generalized likelihood ratio detection of radar target," Signal Processing, Vol. 41, No. 2, 153-164, 1995.

43. Park, H. R., H. R., H. Wang, and J. Li, "An adaptive polarization-space-time processor for radar system," Antennas and Propagation Society International Symposium, Vol. 2, 698-701, 1993.
doi:10.1016/j.optcom.2009.05.067

44. Kuebel, D., "Properties of the degree of cross-polarization in the spacetime domain," Optics Communications, 3397-3401, 2009.

45. Slepian, D. and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty - I," Bell Svst. Tech. J., Vol. 40, No. 1, 43-63, 1961.

46. Slepian, D., "Prolate spheroidal wave functions, Fourier analysis and uncertainty - V," Bell Svst. Tech. J., Vol. 57, No. 5, 1371-1429, 1978.

47. Fancourt, C. L. and J. C. Principe, "On the relationship between the Karhunen-Loeve transform and the prolate spheroidal wave function," Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 261-264, 2000.