Vol. 130
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-07-13
A New Kind of Non-Acoustic Speech Acquisition Method Based on Millimeter Waveradar
By
Progress In Electromagnetics Research, Vol. 130, 17-40, 2012
Abstract
Air is not the only medium that can spread and can be used to detect speech. In our previous paper, another valuable medium - millimeter wave (MMW) was introduced to develop a new kind of speech acquisition technique [Li et al., Progress In Electromagnetics Research B, 9, 199-214, 2008]. Because of the special features of the MMW radar, this speech acquisition method may provide some exciting possibilities for a wide range of applications. In the proposed study, we have designed a new kind of speech acquisition radar system. The super-heterodyne receiver was used in the new system so that to mitigate the severe DC offset problem and the associated 1/f noise at baseband. Furthermore, in order to decrease the harmonic noise, electro-circuit noise, and ambient noise which were combined in the MMW detected speech, an adaptive wavelet packet entropy algorithm is also proposed in this study, which incorporates the wavelet packet entropy based voice/unvoiced radar speech adaptive detection method and the human ear perception properties in a wavelet packet time-scale adaptation speech enhancement process. The performance of the proposed method is evaluated objectively by signal-to-noise ratio and subjectively by mean-opinion-score. The results confirm that the proposed method offers improved effects over other traditional speech enhancement methods for MMW radar speech.
Citation
Sheng Li Ying Tian Guohua Lu Yang Zhang Hui Jun Xue Jian-Qi Wang Xi-Jing Jing , "A New Kind of Non-Acoustic Speech Acquisition Method Based on Millimeter Waveradar," Progress In Electromagnetics Research, Vol. 130, 17-40, 2012.
doi:10.2528/PIER12052207
http://www.jpier.org/PIER/pier.php?paper=12052207
References

1. Titze, I. R., Principles of Voice Production, Prentice Hall, 1994.
doi:10.1121/1.424266

2. Li, S., R. C. Scherer, M. Wan, S. Wang, and H. Wu, "The effect of glottal angle on intraglottal pressure," J. Acoust. Soc. Am, Vol. 119, No. 1, 539-548, 2006.
doi:10.1121/1.2133491

3. Li, S., R. C. Scherer, W. Minxi, S. Wang, and H. Wu, "Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions," J. Acoust. Soc. Am, Vol. 119, No. 5, 3003-3010, 2006.
doi:10.1121/1.2186548

4. Yanagisawa, T. and K. Furihata, "Pickup of speech signal utilization of vibration transducer under high ambient noise," J. Acoust. Soc. Jpn., Vol. 31, No. 3, 213-220, 1975.

5. Li, Z.-W., "Millimeter wave radar for detecting the speech signal applications," International Journal of Infrared and Millimeter Waves, Vol. 17, No. 12, 2175-2183, 1996.
doi:10.1007/BF02069493

6. Li, S., J. Wang, M. Niu, and X. Jing, "The enhancement of millimeter wave conduct speech based on perceptual weighting," Progress In Electromagnetics Research B, Vol. 9, 199-214, 2008.
doi:10.2528/PIERB08063001

7. Park, J.-I. and K.-T. Kim, "A comparative study on isar imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

8. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an ir-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302

9. Lee, K.-C., J.-S. Ou, and M.-C. Fang, "Application of svd noise-reduction technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 81, 447-459, 2008.
doi:10.2528/PIER08032101

10. Byrne, D., M. O'halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001

11. Conceição, R. C., M. O'halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures ," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904

12. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705

13. Hasar, U. C., "Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies," Progress In Electromagnetics Research, Vol. 109, 107-121, 2010.
doi:10.2528/PIER10083006

14. Holzrichter, J. F., G. C. Burnett, and L.~C. Ng, "Speech articulator measurements using low power EM-wave sensors," J. Acoust. Soc. Am, Vol. 103, No. 1, 622-625, 1998.
doi:10.1121/1.421133

15. Hu, R. and B. Raj, "A robust voice activity detector using an acoustic doppler radar," IEEE Workshop on Automatic Speech Recognition and Understanding, Vol. 27, 319-324, 2005.

16. Quatieri, T. F., K. Brady, D. Messing, and J. P. Campbell, "Exploiting nonacoustic sensors for speech encoding," IEEE Transactions on Audio, Speech and Language Processing, Vol. 14, No. 2, 533-544, 2006.
doi:10.1109/TSA.2005.855838

17. Jiao, M., G. Lu, X. Jing, S. Li, Y. Li, and J. Wang, "A novel radar sensor for the non-contact detection of speech signals," Sensors, Vol. 10, No. 5, 4622-4633, 2010.
doi:10.3390/s100504622

18. Bellomo, L., S. Pioch, M. Saillard, and E. Spano, "Time reversal experiments in the microwave range: Description of the radar and results ," Progress In Electromagnetics Research, Vol. 104, 427-448, 2010.
doi:10.2528/PIER10030102

19. Polivka, J., P. Fiala, and J. Machac, "Microwave noise field behaves like white light," Progress In Electromagnetics Research, Vol. 111, 311-330, 2011.
doi:10.2528/PIER10041304

20. Guo, B. and G. Wen, "Periodic time-varying noise in current-commutating cmos mìxers," Progress In Electromagnetics Research, Vol. 117, 283-298, 2011.

21. Boll, S. F., "Suppression of acoustic noise in speech using spectral subtraction ," IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 27, No. 2, 113-120, 1979.
doi:10.1109/TASSP.1979.1163209

22. Berouti, M., R. Schwartz, and J. Makhoul, "Enhancement of speech corrupted by acoustic noise," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, Vol. 4, 208-211, 1979.

23. Mallat, S., A Wavelet Tour of Signal Processing, A Harcourt Science and Technology, Academic-Press, 1999.

24. Strang, G. and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, 1996.

25. Chong, N. R., I. S. Burnett, and J. F. Chicharo, "A new waveform interpolation coding scheme based on pitch synchronous wavelet transform decomposition," IEEE Trans. Speech Audio Process, Vol. 8, No. 3, 345-348, 2000.
doi:10.1109/89.841216

26. Srinivasan, P. and L. Jamieson, "High-quality audio compress using an adaptive wavelet packet decomposition and psychoacoustic modeling," IEEE Trans. Signal Procession, Vol. 46, 1085-1093, 1998.
doi:10.1109/78.668558

27. Deng, H. and H. Ling, "Clutter reduction for synthetic aperture radar imagery based on adaptive wavelet packet transform," Progress In Electromagnetics Research, Vol. 29, 1-23, 2000.
doi:10.2528/PIER99120602

28. Alyt, O. A. M., A. S. Omar, and A. Z. Elsherbeni, "Detection and localization of RF radar pulses in noise environments using wavelet packet transform and higher order statistics," Progress In Electromagnetics Research, Vol. 58, 301-317, 2006.
doi:10.2528/PIER05070204

29. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, E. Babolian, and Z. Masouri, "Calculating the radar cross section of the resistive targets using the haar wavelets," Progress In Electromagnetics Research, Vol. 83, 55-80, 2008.
doi:10.2528/PIER08042504

30. Tsai, H.-C., "Investigation into time- and frequency-domain emi-induced noise in bistable multivibrator," Progress In Electromagnetics Research, Vol. 100, 327-349, 2010.
doi:10.2528/PIER09112904

31. Dl, D. and Denoising by soft thresholding, "IEEE Trans. Inform Theory,", Vol. 41, No. 3, 613-627, 1995.

32. Fu, Q. and E. Wan, "Perceptual wavelet adaptive denoising of speech," Eurospeech, 578-580, 2003.

33. Ayat, S., M. T. Manzuri-Shalmani, and R. Dianat, "An improved wavelet-based speech enhancement by using speech signal features," Computers and Electrical Engineering, Vol. 32, 411-425, 2006.
doi:10.1016/j.compeleceng.2006.05.002

34. Sheikhzadeh, H. and H. Abutalebi, "An improved wavelet-based speech enhancement system," Eurospeech, 1855-1858, 2001.

35. Mahmoudi, D., "A microphone array for speech enhancement using multiresolution wavelet transform," Proc. of Eurospeech, 339-342, Rhodes, Greece, 1997.

36. Gulzow, T., A. Engelsberg, and U. Heute, "Comparison of a discrete wavelet transformation and nonuniform polyphase ¯lterbank applied to spectral-subtraction speech enhancement," Signal Processing, Vol. 64, 5-19, 1998.
doi:10.1016/S0165-1684(97)00172-2

37. Sika, J. and V. Davidek, "Multi-channel noise reduction using wavelet filter bank," Eurospeech, 2595-2598, Rhodes, Greece, 1997.

38. Bahoura, M. and J. Rouat, "Wavelet speech enhancement based on time-scale adaptation," Speech Communication, Vol. 48, 1620-1637, 2006.
doi:10.1016/j.specom.2006.06.004

39. Gray, R. M., Entropy and Information Theory, Springer, 1990.

40. Wang, J., C. Zheng, X. Jin, G. Lu, H. Wang, and A. Ni, "Study on a non-contact life parameter detection system using millimeter wave ," Space Medicine & Medical Engineering, Vol. 17, No. 3, 157-161, 2004.

41. Udrea, R. M., S. Ciochina, and D. N. Vizireanu, "Multi-band bark scale spectral over-subtraction for colored noise reduction," International Symposium on Signals, Circuits and Systems, Vol. 1, 311-314, 2005.
doi:10.1109/ISSCS.2005.1509916

42. Ghanbari, Y., M. Reza, and M. R. Karami-Mollaei, "A new approach for speech enhancement based on the adaptive thresholding of the wavelet packets ," Speech Communication, Vol. 48, 927-940, 2006.
doi:10.1016/j.specom.2005.12.002

43. Blanco, S., A. Figliola, R. Q. Quiroga, O. A. Rosso, and E. Serrano, "Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function," Phys. Rev., Vol. 57, No. 1, 932-940, 1998.

44. Shannon, C. E., "A mathematical theory of communication," Bell System Technical Journal, Vol. 27, Nos. 379-423 and 623-656, 1948.

45. Rosso, O. A., S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, and E. Basar, "Wavelet entropy: A new tool for analysis of short duration brain electrical signals," Journal of Neuroscience Methods, Vol. 105, No. 1, 65-75, 2001.
doi:10.1016/S0165-0270(00)00356-3

46. Bahoura, M. and J. Rouat, "Wavelet speech enhancement based on the teager energy operator," IEEE Signal Process. Lett., Vol. 8, 10-12, 2001.
doi:10.1109/97.889636

47. Johnstone, I. and B. Silverman, "Wavelet threshold estimators for data with correlated noise," J. Roy. Statist. Soc., Vol. 59, No. 2, 319-351, 1997.
doi:10.1111/1467-9868.00071

48. Donoho, D. and I. Johnstone, "Ideal spatial adaptation by wavelet shrinkage," Biometrika, Vol. 81, 425-455, 1994.
doi:10.1093/biomet/81.3.425

49. Donoho, D. and I. Johnstone, "Adapting to unknown smoothness via wavelet shrinkage," J. Amer. Stat. Assoc., Vol. 90, No. 432, 1200-1224, 1995.
doi:10.1080/01621459.1995.10476626

50. Rangachari, S. and P. C. Loizou, "A noise-estimation algorithm for highly non-stationary environments," Speech Communication, Vol. 48, 220-231, 2006.
doi:10.1016/j.specom.2005.08.005