1. Rakov, V., M. A. Uman, and K. J. Rambo, "A review of ten years of triggered-lightning experiments at Camp Blanding, Florida," Atmospheric Research, Vol. 76, 503-517, 2005.
doi:10.1016/j.atmosres.2004.11.028 Google Scholar
2. Popov, M., S. He, and R. Thottappillil, "Reconstruction of lightning currents and return stroke model parameters using remote electromagnetic fields," Journal of Geophysical Research, Vol. 105, 24469-24481, 2000.
doi:10.1029/2000JD900283 Google Scholar
3. Andreotti, A., D. Assante, S. Falco, and L. Verolino, "An improved procedure for the return stroke current identification," IEEE Transactions on Magnetics, Vol. 41, 1872-1875, 2005.
doi:10.1109/TMAG.2005.846283 Google Scholar
4. Milewski, M. and A. Hussein, "Lightning return-stroke transmission line model based on CN tower lightning data and derivative of Heidler function," Canadian Conference on Electrical and Computer Engineering (CCECE), 2008.
5. Hussein, A., M. Milewski, W. Janischewskyj, F. Noor, and F. Jabbar, "Characteristics of lightning flashes striking the CN Tower below its tip ," Journal of Electrostatics, Vol. 65, 307-315, 2007.
doi:10.1016/j.elstat.2006.09.011 Google Scholar
6. Kodali, V., V. Rakov, M. Uman, K. Rambo, G. Schnetzer, J. Schoene, and J. Jerauld, "Triggered-lightning properties inferred from measured currents and very close electric fields," Atmospheric Research, Vol. 76, 355-376, 2005.
doi:10.1016/j.atmosres.2004.11.036 Google Scholar
7. Rachidi, F., J. Bermudez, M. Rubinstein, and V. Rakov, "On the estimation of lightning peak currents from measured fields using lightning location systems ," Journal of Electrostatics, Vol. 60, 121-129, 2004.
doi:10.1016/j.elstat.2004.01.010 Google Scholar
8. Uman, M. A. and D. K. McLain, "Lightning return stroke current from magnetic and radiation field measurements," Journal of Geophysical Research, Vol. 75, 5143-5147, 1970.
doi:10.1029/JC075i027p05143 Google Scholar
9. Uman, M. A., D. K. McLain, and E. Krider, "The electromagnetic radiation from a finite antenna," Amer. J. Phys., Vol. 43, 33-38, 1975.
doi:10.1119/1.10027 Google Scholar
10. Shoory, A., F. Rachidi, M. Rubinstein, R. Moini, and S. H. Sadeghi, "Analytical expressions for zero-crossing times in lightning return-stroke engineering models," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, 963-974, 2009.
doi:10.1109/TEMC.2009.2029699 Google Scholar
11. Rachidi, F. and C. Nucci, "On the Master, Uman, Lin, Standler and the modified transmission line lightning return stroke current models ," Journal of Geophysical Research, Vol. 95, 20389-20393, 1990.
doi:10.1029/JD095iD12p20389 Google Scholar
12. Thottappillil, R. and M. Uman, "Comparison of lightning return-stroke models," Journal of Geophysical Research, Vol. 98, 22903, 1993.
doi:10.1029/93JD02185 Google Scholar
13. Andreotti, A., U. De Martinis, and L. Verolino, "An inverse procedure for the return stroke current identification," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, 155-160, 2002.
doi:10.1109/15.925535 Google Scholar
14. Andreotti, A., F. Delfino, P. Girdinio, and L. Verolino, "An identification procedure for lightning return strokes," Journal of Electrostatics, Vol. 51, 326-332, 2001.
doi:10.1016/S0304-3886(01)00097-3 Google Scholar
15. Andreotti, A., F. Delfino, P. Girdinio, and L. Verolino, "A field-based inverse algorithm for the identification of different height lightning return strokes," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 20, 724-731, 2001.
doi:10.1108/03321640110393716 Google Scholar
16. Rakov, V., "Characterization of lightning electromagnetic fields and their modeling," 14th Int. Zurich Symposium on Electromagnetic Compatibility, 3-16, Zurich, 2001.
17. Bizjaev, A., V. Larionov, and E. Prokhorov, "Energetic characteristics of lightning channel," 20th Int. Conf. Lightning Protection, 1.1, Switzerland, 1990. Google Scholar
18. Dubovoy, E., M. Mikhailov, A. Ogonkov, and V. Pryazhinsky, "Measurement and numerical modeling of radio sounding re°ection from a lightning channel," Journal of Geophysical Research, Vol. 100, 1497-1502, 1995.
doi:10.1029/94JD00965 Google Scholar
19. Dubovoy, E., V. Pryazhinsky, and G. Chitanava, "Calculation of energy dissipation in lightning channel," Meteorologiya i Gidrologiya, Vol. 2, 4-45, 1991. Google Scholar
20. Podgorski, A. S. and J. A. Landt, "Three dimensional time domain modelling of lightning," IEEE Transactions on Power Delivery, Vol. 2, 931-938, 1987.
doi:10.1109/TPWRD.1987.4308198 Google Scholar
21. Moini, R., B. Kordi, G. Rafi, and V. Rakov, "A new lightning return stroke model based on antenna theory," Journal of Geophysical Research, Vol. 105, 29693-29702, 2000.
doi:10.1029/2000JD900541 Google Scholar
22. Moini, R., S. Sadeghi, and B. Kordi, "An electromagnetic model of lightning return stroke channel using electric field integral equation in time domain," Engineering Analysis with Boundary Elements, Vol. 27, 305-314, 2003.
doi:10.1016/S0955-7997(02)00118-2 Google Scholar
23. Gardner, R. L., Lightning Electromagnetics, Hemisphere Publishing, New York, 1990.
24. Visacro, S. and A. De Conti, "A distributed-circuit return-stroke model allowing time and height parameter variation to match lightning electromagnetic field waveform signatures," Geophysical Research Letters, Vol. 32, 2005. Google Scholar
25. Mattos, M. A. F. and C. Christopoulos, "A model of the lightning channel, including corona, and prediction of the generated electromagnetic fields," Journal of Physics D: Applied Physics, Vol. 23, 40, 1990.
doi:10.1088/0022-3727/23/1/007 Google Scholar
26. Gomes, C. and V. Cooray, "Concepts of lightning return stroke models," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, 82-96, 2000.
doi:10.1109/15.831708 Google Scholar
27. Cooray, V., "On the concepts used in return stroke models applied in engineering practice," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, 101-108, 2003.
doi:10.1109/TEMC.2002.808041 Google Scholar
28. Cooray, V. and V. Rakov, "A current generation type return stroke model that predicts the return stroke velocity," Journal of Lightning Research, Vol. 1, 32-39, 2007. Google Scholar
29. Cooray, V., The Lightning Flash, IET Press, 2003.
30. Rakov, V. and M. Uman, "Review and evaluation of lightning return stroke models including some aspects of their application," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, 403-426, 1998.
doi:10.1109/15.736202 Google Scholar
31. Diendorfer, G. and M. Uman, "An improved return stroke model with specified channel-base current," Journal of Geophysical Research --- Atmospheres, Vol. 95, 13621-13644, 1990.
doi:10.1029/JD095iD09p13621 Google Scholar
32. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "Analytical expressions for electromagnetic fields associated with the inclined lightning channels in the time domain ," Electric Power Components and Systems, Vol. 40, 414-438, 2012.
doi:10.1080/15325008.2011.639130 Google Scholar
33. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic ¯elds at intermediate distances from lightning channel," Progress In Electromagnetic Research, Vol. 110, 329-352, 2010.
doi:10.2528/PIER10080801 Google Scholar
34. Izadi, M., M. Z. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods ," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011. Google Scholar
35. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "Numerical expressions in time domain for electromagnetic fields due to lightning channels ," International Journal of Applied Electromagnetics and Mechanics, Vol. 37, 275-289, 2011. Google Scholar
36. Kreyszig, E., Advanced Engineering Mathematics, Wiley-India, 2007.
37. Sadiku, M. N. O., Numerical Technique in Electromagnetics, CRC Press, LLC, 2001.
38. Lee, Y.-G., "Electric field discontinuity-considered effective-permittivities and integration-tensors for the three-dimensional finite-difference time-domain method ," Progress In Electromagnetics Research, Vol. 118, 335-354, 2011.
doi:10.2528/PIER11060304 Google Scholar
39. Engelbrecht, A. P., Fundamentals of Computational Swarm Intelligence, 1st Ed., Wiley Chichester, UK, 2005.
40. Clerc, M., Particle Swarm Optimization, Wiley-ISTE, 2006.
41. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 397-407, 2004.
doi:10.1109/TAP.2004.823969 Google Scholar
42. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011. Google Scholar
43. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO ," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105 Google Scholar
44. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO ," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
doi:10.2528/PIER12022806 Google Scholar
45. Li, Y., S. Sun, F. Yang, and L. J. Jiang, "Design of dual-band slotted patch hybrid couplers based on PSO algorithm," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2409-2419, 2011.
doi:10.1163/156939311798806220 Google Scholar
46. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced Particle Swarm Optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
doi:10.2528/PIER11052303 Google Scholar
47. Wang, J., B. Yang, S. H. Wu, and J. S. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1985-1998, 2011.
doi:10.1163/156939311798071965 Google Scholar