1. Botten, I. C., M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The dielectric lamellar diffraction grating," Optica Acta, Vol. 28, 413-428, 1981.
doi:10.1080/713820571 Google Scholar
2. Botten, I. C., M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The finitely conducting lamellar diffraction grating," Optica Acta, Vol. 28, 1087-1102, 1981.
doi:10.1080/713820680 Google Scholar
3. Knop, K., "Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves ," J. Opt. Soc. Am., Vol. 68, 1206-1210, 1978.
doi:10.1364/JOSA.68.001206 Google Scholar
4. Li, L., "New formulation of the fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am., Vol. 14, 2758-2767, 1997.
doi:10.1364/JOSAA.14.002758 Google Scholar
5. Morf, R. H., "Exponentially convergent and numerically efficient solution of Maxwell's equations for lamellar gratings," J. Opt. Soc. Am. A, Vol. 12, 1043-1056, 1995.
doi:10.1364/JOSAA.12.001043 Google Scholar
6. Plumey, J. P., B. Guizal, and J. Chandezon, "Coordinate transformation method as applied to asymmetric gratings with vertical facets," J. Opt. Soc. Am. A, Vol. 14, 610-617, 1997.
doi:10.1364/JOSAA.14.000610 Google Scholar
7. Edee, K., P. Schiavone, and G. Granet, "Analysis of defect in E.U.V. lithography mask using a modal method by nodal B-spline expansion," Japanese Journal of Applied Physics, Vol. 44, No. 9A, 6458-6462, 2005.
doi:10.1143/JJAP.44.6458 Google Scholar
8. Armeanu, A. M., M. K. Edee, G. Granet, and P. Schiavone, "Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating," Progress In Electromagnetics Research, Vol. 106, 243-261, 2010.
doi:10.2528/PIER10021902 Google Scholar
9. Harrington, R. F., Field Computation by Moment Methods, The Macmillan Company, New York, 1968, reprinted by IEEE Press, New York, 1993.
10. Edee, K., "Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings," J. Opt. Soc. Am., Vol. 28, 2006-2013, 2011.
doi:10.1364/JOSAA.28.002006 Google Scholar
11. Hochstrasser, U. W., "Orthogonal polynomials," Handbook of Mathematical Functions, 771-802, M. Abramowitz and I. A. Stegun, eds., Dover, 1965. Google Scholar
12. Yala, H., B. Guizal, and D. Felbacq, "Fourier modal method with spatial adaptive resolution for structures comprising homogeneous layers," J. Opt. Soc. Am. A, Vol. 26, 2567-2570, 2009.
doi:10.1364/JOSAA.26.002567 Google Scholar
13. Popov, E., B. Chernov, M. Neviµere, and N. Bonod, "Differential theory: Application to highly conducting gratings," J. Opt. Soc. Am. A, Vol. 21, 199-206, 2004.
doi:10.1364/JOSAA.21.000199 Google Scholar
14. Lyndin, N. M., O. Parriaux, and A. V. Tishchenko, "Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings," J. Opt. Soc. Am. A, Vol. 24, 3781-3788, 2007.
doi:10.1364/JOSAA.24.003781 Google Scholar
15. Guizal, B., H. Yala, and D. Felbacq, "Reformulation of the eigenvalue problem in the Fourier modal method with spatial adaptive resolution," Opt. Lett. A, Vol. 34, 2790-2792, 2009.
doi:10.1364/OL.34.002790 Google Scholar