Vol. 130
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-19
An Mr Brain Images Classifier via Principal Component Analysis and Kernel Support Vector Machine
By
Progress In Electromagnetics Research, Vol. 130, 369-388, 2012
Abstract
Automated and accurate classification of MR brain images is extremely important for medical analysis and interpretation. Over the last decade numerous methods have already been proposed. In this paper, we presented a novel method to classify a given MR brain image as normal or abnormal. The proposed method first employed wavelet transform to extract features from images, followed by applying principle component analysis (PCA) to reduce the dimensions of features. The reduced features were submitted to a kernel support vector machine (KSVM). The strategy of K-fold stratified cross validation was used to enhance generalization of KSVM. We chose seven common brain diseases (glioma, meningioma, Alzheimer's disease, Alzheimer's disease plus visual agnosia, Pick's disease, sarcoma, and Huntington's disease) as abnormal brains, and collected 160 MR brain images (20 normal and 140 abnormal) from Harvard Medical School website. We performed our proposed methods with four different kernels, and found that the GRB kernel achieves the highest classification accuracy as 99.38%. The LIN, HPOL, and IPOL kernel achieves 95%, 96.88%, and 98.12%, respectively. We also compared our method to those from literatures in the last decade, and the results showed our DWT+PCA+KSVM with GRB kernel still achieved the best accurate classification results. The averaged processing time for a 256x256 size image on a laptop of P4 IBM with 3 GHz processor and 2 GB RAM is 0.0448 s. From the experimental data, our method was effective and rapid. It could be applied to the field of MR brain image classification and can assist the doctors to diagnose a patient normal or abnormal in some degree.
Citation
Yu-Dong Zhang Lenan Wu , "An Mr Brain Images Classifier via Principal Component Analysis and Kernel Support Vector Machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.
doi:10.2528/PIER12061410
http://www.jpier.org/PIER/pier.php?paper=12061410
References

1. Zhang, Y., L. Wu, and S. Wang, "Magnetic resonance brain image classification by an improved artificial bee colony algorithm," Progress In Electromagnetics Research, Vol. 116, 65-79, 2011.

2. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504

3. Golestanirad, L., A. P. Izquierdo, S. J. Graham, J. R. Mosig, and C. Pollo, "Effect of realistic modeling of deep brain stimulation on the prediction of volume of activated tissue ," Progress In Electromagnetics Research, Vol. 126, 1-16, 2012.
doi:10.2528/PIER12013108

4. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402

5. Oikonomou, A., I. S. Karanasiou, and N. K. Uzunoglu, "Phased array near field radiometry for brain intracranial applications," Progress In Electromagnetics Research, Vol. 109, 345-360, 2010.
doi:10.2528/PIER10073004

6. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.

7. Asimakis, N. P., I. S. Karanasiou, P. K. Gkonis, and N. K. Uzunoglu, "Theoretical analysis of a passive acoustic brain monitoring system," Progress In Electromagnetics Research B, Vol. 23, 165-180, 2010.
doi:10.2528/PIERB10053112

8. Chaturvedi, C. M., V. P. Singh, P. Singh, P. Basu, M. Singaravel, R. K. Shukla, A. Dhawan, A. K. Pati, R. K. Gangwar, and S. P. Singh, "2.45 GHz (CW) microwave irradiation alters circadian organization, spatial memory, DNA structure in the brain cells and blood cell counts of male mice, mus musculus," Progress In Electromagnetics Research B, Vol. 29, 23-42, 2011.
doi:10.2528/PIERB11011205

9. Emin Tagluk, M., M. Akin, and N. Sezgin, "Classification of sleep apnea by using wavelet transform and artificial neural networks," Expert Systems with Applications, Vol. 37, No. 2, 1600-1607, 2010.
doi:10.1016/j.eswa.2009.06.049

10. Zhang, Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905

11. Camacho, J., J. Picó, and A. Ferrer, "Corrigendum to `The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?' [Anal. Chim. Acta Volume 642 (2009) 59-68]," Analytica Chimica Acta,, Vol. 658, No. 1, 106-106, 2010.
doi:10.1016/j.aca.2009.10.054

12. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002

13. Cocosco, C. A., A. P. Zijdenbos, and A. C. Evans, "A fully automatic and robust brain MRI tissue classification method ," Medical Image Analysis, Vol. 7, No. 4, 513-527, 2003.
doi:10.1016/S1361-8415(03)00037-9

14. Zhang, Y. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

15. Yeh, J.-Y. and J. C. Fu, "A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI," Expert Systems with Applications, Vol. 34, No. 2, 1285-1295, 2008.
doi:10.1016/j.eswa.2006.12.012

16. Patil, N. S., et al., "Regression models using pattern search assisted least square support vector machines," Chemical Engineering Research and Design, Vol. 83, No. 8, 1030-1037, 2005.
doi:10.1205/cherd.03144

17. Wang, F.-F. and Y.-R. Zhang, "The support vector machine for dielectric target detection through a wall," Progress In Electromagnetics Research Letters, Vol. 23, 119-128, 2011.

18. Xu, Y., Y. Guo, L. Xia, and Y. Wu, "An support vector regression based nonlinear modeling method for Sic mesfet," Progress In Electromagnetics Research Letters, Vol. 2, 103-114, 2008.
doi:10.2528/PIERL07122102

19. Li, D., W. Yang, and S. Wang, "Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine," Computers and Electronics in Agriculture, Vol. 4, No. 2, 274-279, 201.

20. Gomes, T. A. F., et al., "Combining meta-learning and search techniques to select parameters for support vector machines," Neurocomputing, Vol. 75, No. 1, 3-13, 2012.
doi:10.1016/j.neucom.2011.07.005

21. Hable, R., "Asymptotic normality of support vector machine variants and other regularized kernel methods," Journal of Multivariate Analysis, Vol. 106, 92-117, 2012.
doi:10.1016/j.jmva.2011.11.004

22. Ghosh, A., B. Uma Shankar, and S. K. Meher, "A novel approach to neuro-fuzzy classification," Neural Networks, Vol. 22, No. 1, 100-109, 2009.
doi:10.1016/j.neunet.2008.09.011

23. Gabor, D., "Theory of communication. Part 1: The analysis of information," Journal of the Institution of Electrical Engineers Part III: Radio and Communication Engineering, Vol. 93, No. 26, 429-441, 1946.

24. Zhang, Y. and L. Wu, "Crop classification by forward neural network with adaptive chaotic particle swarm optimization," Sensors, Vol. 11, No. 5, 4721-4743, 2011.
doi:10.3390/s110504721

25. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105

26. Ala, G., E. Francomano, and F. Viola, "A wavelet operator on the interval in solving Maxwell's equations," Progress In Electromagnetics Research Letters, Vol. 27, 133-140, 2011.
doi:10.2528/PIERL11090505

27. Iqbal, A. and V. Jeoti, "A novel wavelet-Galerkin method for modeling radio wave propagation in tropospheric ducts," Progress In Electromagnetics Research B, Vol. 36, 35-52, 2012.
doi:10.2528/PIERB11091201

28. Messina, A., "Refinements of damage detection methods based on wavelet analysis of dynamical shapes," International Journal of Solids and Structures, Vol. 45, No. 14-15, 4068-4097, 2008.
doi:10.1016/j.ijsolstr.2008.02.015

29. Martiskainen, P., et al., "Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines," Applied Animal Behaviour Science, Vol. 119, No. 1-2, 32-38, 2009.
doi:10.1016/j.applanim.2009.03.005

30. Bermejo, S., B. Monegal, and J. Cabestany, "Fish age categorization from otolith images using multi-class support vector machines," Fisheries Research, Vol. 84, No. 2, 247-253, 2007.
doi:10.1016/j.fishres.2006.11.021

31. Muniz, A. M. S, et al., "Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait ," Journal of Biomechanics, Vol. 43, No. 4, 720-726, 2010.
doi:10.1016/j.jbiomech.2009.10.018

32. Bishop, C. M., Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-Verlag New York, Inc., 2006.

33. Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag New York, Inc., 1995.

34. Jeyakumar, V., J. H. Wang, and G. Li, "Lagrange multiplier characterizations of robust best approximations under constraint data uncertainty," Journal of Mathematical Analysis and Applications, Vol. 393, No. 1, 285-297, 2012.
doi:10.1016/j.jmaa.2012.03.037

35. Cucker, F. and S. Smale, "On the mathematical foundations of learning," Bulletin of the American Mathematical Society, Vol. 39, 1-49, 2002.
doi:10.1090/S0273-0979-01-00923-5

36. Poggio, T. and S. Smale, "The mathematics of learning: Dealing with data," Notices of the American Mathematical Society (AMS), Vol. 50, No. 5, 537-544, 2003.

37. Acevedo-Rodríguez, J., et al., "Computational load reduction in decision functions using support vector machines," Signal Processing, Vol. 89, No. 10, 2066-2071, 2009.
doi:10.1016/j.sigpro.2009.03.032

38. Deris, A. M., A. M. Zain, and R. Sallehuddin, "Overview of support vector machine in modeling machining performances," Procedia Engineering, Vol. 24, 308-312, 2011.
doi:10.1016/j.proeng.2011.11.2647

39. May, R. J., H. R. Maier, and G. C. Dandy, "Data splitting for artificial neural networks using SOM-based stratified sampling," Neural Networks, Vol. 23, No. 2, 283-294, 2010.
doi:10.1016/j.neunet.2009.11.009

40. Armand, S., et al., "Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees," Gait & Posture, Vol. 25, No. 3, 475-484, 2007.
doi:10.1016/j.gaitpost.2006.05.014

41. El-Dahshan, E.-S. A., T. Hosny, and A.-B. M. Salem, "Hybrid intelligent techniques for MRI brain images classification," Digital Signal Processing, Vol. 20, No. 2, 433-441, 2010.
doi:10.1016/j.dsp.2009.07.002

42. Evans, A. C., et al., "Brain templates and atlases," NeuroImage, Vol. 62, No. 2, 911-922, 2012.
doi:10.1016/j.neuroimage.2012.01.024