1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847 Google Scholar
3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, Nov. 1999.
doi:10.1109/22.798002 Google Scholar
4. Enkrich, C., M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett., Vol. 95, 203901, 2005.
doi:10.1103/PhysRevLett.95.203901 Google Scholar
5. Huangfu, J., L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett., Vol. 84, 1537-1539, 2004.
doi:10.1063/1.1655673 Google Scholar
6. Chen, H., L. Ran, J. Huangfu, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
doi:10.2528/PIER04051201 Google Scholar
7. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science, Vol. 306, 1351-1353, Nov. 2004.
doi:10.1126/science.1105371 Google Scholar
8. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, 2267, Aug. 2007.
doi:10.1109/TAP.2007.901950 Google Scholar
9. Gans, R. and H. Happel, "Zur optik kolloidaler metallÄosungen," Ann. Physik, 277-300, 4th Folge, Bd. 29, 1909. Google Scholar
10. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Transactions on Antennas and Propagation, Vol. 51, 2603, Oct. 2003. Google Scholar
11. Lewin, L., "The electrical constants of a material loaded with spherical particles," Electrical Engineers --- Part III: Radio and Communication Engineering, Vol. 94, 65-68, Jan. 1947. Google Scholar
12. Vendik, O. G. and M. S. Gashinova, "Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix," 34th European Microwave Conference 2004, Vol. 3, 1209-1212.
13. Jylhä, L., I. Kolmakov, S. Maslovski, and S. Tretyakov, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, 043102, 2006.
doi:10.1063/1.2173309 Google Scholar
14. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series, Vol. 47, The Institution of Electrical Engineers, Stevenage, Herts, UK, 1999 .
15. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies," Phys. Rev. B, Vol. 73, 045105, 2006.
doi:10.1103/PhysRevB.73.045105 Google Scholar
16. Basilio, L. I., L. K. Warne, W. L. Langston, W. A. Johnson, and M. B. Sinclair, "Microwave-frequency, negative-index metamaterial designs based on degenerate dielectric resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 113-116, Jan. 2012.
doi:10.1109/LAWP.2012.2184252 Google Scholar
17. Kuester, E. F., N. Memic, S. Shen, A. Scher, S. Kim, K. Kumley, and H. Loui, "A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles ," Progress In Electromagnetics Research B, Vol. 33, 175-202, 2011.
doi:10.2528/PIERB11042206 Google Scholar
18. Peng, L., L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2007.
doi:10.1103/PhysRevLett.98.157403 Google Scholar
19. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402 Google Scholar
20. Cai, X., R. Zhu, and G. Hu, "Experimental study for metamaterials based on dielectric resonators and wire frame," Metamaterials, Vol. 2, 220-226, Dec. 2008.
doi:10.1016/j.metmat.2008.08.001 Google Scholar
21. Lepetit, T., É. Akmansoy, and J.-P. Ganne, "Experimental measurement of negative index in an all-dielectric metamaterial," Appl. Phys. Lett., Vol. 95, 121101, 2009.
doi:10.1063/1.3232222 Google Scholar
22. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of effective circuit model," Progress In Electromagnetics Research, Vol. 16, 159-170, 2011. Google Scholar
23. Yannopapas, V. and A. Moroz, "Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges," Journal of Physics: Condensed Matter, Vol. 17, 3717, 2005.
doi:10.1088/0953-8984/17/25/002 Google Scholar
24. Garcia-Etxarri, A., R. Gomez-Medina, L. S. Froufe-Perez, C. Lopez, L. Chantada, F. Sche®old, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, "Strong magnetic response of submicron Silicon particles in the infrared," Optics Express, Vol. 19, 4815, Mar. 2011.
doi:10.1364/OE.19.004815 Google Scholar
25. Ahmadi, A. and H. Mosallaei, "All-dielectric metamaterial: Double negative behavior and bandwidth-loss improvement," Antennas and Propagation Society International Symposium, 5527-5530, Jun. 2007. Google Scholar
26. Vendik, I. B., M. A. Odit, and D. S. Kozlov, "3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions ," Metamaterials, Vol. 3, 140-147, 2009.
doi:10.1016/j.metmat.2009.09.001 Google Scholar
27. Bohren, C. F. and D. R. Huffman, "Absorption and Scattering of Light by Small Particles," Wiley, University of California, Berkeley, 1983. Google Scholar
28. Tserkezis, C., C. Gantzounis, and N. Stefanou, "Collective plasmonic modes in ordered assemblies of metallic nanoshells," Journal of Physics: Condensed Matter, Vol. 20, 075232, 2008.
doi:10.1088/0953-8984/20/7/075232 Google Scholar
29. Li, J., G. Sun, and C. T. Chan, "Optical properties of photonic crystals composed of metal-coated spheres," Phys. Rev. B, Vol. 73, 075117, 2006.
doi:10.1103/PhysRevB.73.075117 Google Scholar
30. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
31. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
32. Smith, D. R., S. Schultz, P. Marko·s, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65-195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
33. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Scher, and J. Baker-Jarvis, "Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements," IEEE Transactions on Antennas and Propagation, Vol. 59, 2226, Jun. 2011.
doi:10.1109/TAP.2011.2143679 Google Scholar
34. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Scher, and J. Baker-Jarvis, "Effective material property extraction of a metamaterial by taking boundary effects into account at TE/TM polarized incidence," Progress In Electromagnetics Research B, Vol. 36, 1-33, 2012.
doi:10.2528/PIERB11072910 Google Scholar
35. Chen, X., T. M. Grzegorczyk, B. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
36. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar
37. Vasylchenko, A., Y. Schols, W. De Raedt, and G. A. E. Vandenbosch, "Quality assessment of computational techniques and software tools for planar antenna analysis," IEEE Antennas Propagat. Magazine, Vol. 51, No. 1, 23-38, Feb. 2009.
doi:10.1109/MAP.2009.4939017 Google Scholar
38. He, X., Y. Wang, J. Mei, T. Gui, and J. Yin, "Three-dimensional surface current loops in broadband responsive negative refractive metamaterial with isotropy," Chinese Physics B, Vol. 21, 044101, 2012.
doi:10.1088/1674-1056/21/4/044101 Google Scholar