1. Montgomery, J., "Scattering by an infinite periodic array of thin conductors on a dielectric sheet," IEEE Transactions on Antennas and Propagation, Vol. 23, 70-75, Jan. 1975.
doi:10.1109/TAP.1975.1141006 Google Scholar
2. Tsao, C.-H. and R. Mittra, "Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses," IEEE Transactions on Antennas and Propagation, Vol. 32, 478-486, May 1984.
doi:10.1109/TAP.1984.1143348 Google Scholar
3. Zarrillo, G. and K. Aguiar, "Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 35, 1406-1417, Dec. 1987.
doi:10.1109/TAP.1987.1144035 Google Scholar
4. Smith, D. R., S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, "Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity," Applied Physics Letters, Vol. 65, No. 5, 645-647, 1994.
doi:10.1063/1.112258 Google Scholar
5. Sigalas, M. M., C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B, Vol. 52, 11744-11751, Oct. 1995. Google Scholar
6. Suzuki, T. and P. K. L. Yu, "Dispersion relation at point l in the photonic band structure of the face-centered-cubic lattice with active or conductive dielectric media," J. Opt. Soc. Am. B, Vol. 12, 583-591, Apr. 1995.
doi:10.1364/JOSAB.12.000583 Google Scholar
7. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3d wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, 2480-2483, Apr. 1996.
doi:10.1103/PhysRevLett.76.2480 Google Scholar
8. Maier, S. A., P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater., Vol. 2, 229-232, Apr. 2003.
doi:10.1038/nmat852 Google Scholar
9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
10. Smith, D. R., D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Applied Physics Letters, Vol. 75, No. 10, 1425-1427, 1999.
doi:10.1063/1.124714 Google Scholar
11. Maier, S. A., M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Applied Physics Letters, Vol. 78, No. 1, 16-18, 2001.
doi:10.1063/1.1337637 Google Scholar
12. Maier, S. A., P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in au nanoparticle chain waveguides of di®erent lengths: Estimation of waveguide loss," Applied Physics Letters, Vol. 81, No. 9, 1714-1716, 2002.
doi:10.1063/1.1503870 Google Scholar
13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity ," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
14. Guida, G., D. Maystre, G. Tayeb, and P. Vincent, "Mean-field theory of two-dimensional metallic photonic crystals," J. Opt. Soc. Am. B, Vol. 15, 2308-2315, Aug. 1998.
doi:10.1364/JOSAB.15.002308 Google Scholar
15. Abdeddaim, R., A. Ourir, and J. de Rosny, "Realizing a negative index metamaterial by controlling hybridization of trapped modes," Phys. Rev. B, Vol. 83, 033101, Jan. 2011.
doi:10.1103/PhysRevB.83.033101 Google Scholar
16. Ourir, A., R. Abdeddaim, and J. de Rosny, "Double-t metamaterial for parallel and normal transverse electric incident waves ," Optics Letters, Vol. 36, 1527-1529, May 2011.
doi:10.1364/OL.36.001527 Google Scholar
17. Podolskiy, V. A., A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," Journal of Nonlinear Optical Physics & Materials, Vol. 11, No. 1, 65-74, 2002.
doi:10.1142/S0218863502000833 Google Scholar
18. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of nearinfrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, Sep. 2005.
doi:10.1103/PhysRevLett.95.137404 Google Scholar
19. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Optics Letters, Vol. 30, 3198-3200, Dec. 2005.
doi:10.1364/OL.30.003198 Google Scholar
20. Linden, S., M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett., Vol. 97, 083902, Aug. 2006.
doi:10.1103/PhysRevLett.97.083902 Google Scholar
21. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
22. Alù, A. and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines," Phys. Rev. B, Vol. 74, 205436, Nov. 2006. Google Scholar
22. Shvets, G., S. Trenda¯lov, J. B. Pendry, and A. Sarychev, "Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett., Vol. 99, 053903, Aug. 2007.
doi:10.1103/PhysRevLett.99.053903 Google Scholar
24. Lemoult, F., G. Lerosey, J. de Rosny, and M. Fink, "Resonant metalenses for breaking the diffraction barrier," Phys. Rev. Lett., Vol. 104, 203901, May 2010.
doi:10.1103/PhysRevLett.104.203901 Google Scholar
25. Li, X. and M. I. Stockman, "Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal," Phys. Rev. B, Vol. 77, 195109, May 2008.
doi:10.1103/PhysRevB.77.195109 Google Scholar
26. Harrington, R., "Matrix methods for field problems," Proceedings of the IEEE, Vol. 55, 136-149, Feb. 1967.
doi:10.1109/PROC.1967.5433 Google Scholar
27. Chen, C.-C., "Scattering by a two-dimensional periodic array of conducting plates," IEEE Transactions on Antennas and Propagation, Vol. 18, 660-665, Sep. 1970.
doi:10.1109/TAP.1970.1139760 Google Scholar
28. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," Journal of Applied Physics, Vol. 92, 6252-6261, Nov. 2002.
doi:10.1063/1.1510945 Google Scholar
29. Shamonina, E. and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: Components for a onedimensional waveguide," Journal of Physics D-applied Physics, Vol. 37, Int. Phys. Dielectr. Grp., Feb. 2004. Google Scholar
30. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nature Photonics, Vol. 3, 157-162, Mar. 2009.
doi:10.1038/nphoton.2009.4 Google Scholar
31. Zhou, J., T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett., Vol. 95, 223902, Nov. 2005. Google Scholar
32. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New Journal of Physics, Vol. 7, No. 1, 168, 2005.
doi:10.1088/1367-2630/7/1/168 Google Scholar
33. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Optics Express, Vol. 16, 18131-18144, Oct. 2008. Google Scholar
34. Orfanidis, S. J., Electromagnetic Waves and Antennas, Electronic book, Chap. 16, 655, Aug. 2010, http://www.ece.rutgers.edu/ orfanidi/ewa/.
35. Sydoruk, O., O. Zhuromskyy, A. Radkovskaya, E. Shamonina, and L. Solymar, Theory and Phenomena of Metamaterials, Meta-materials Handbook, Chap. 7, 36-1{36-13, CRC Press/Taylor & Francis, 2009.
36. Liu, H., D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B, Vol. 76, 073101, Aug. 2007.
doi:10.1103/PhysRevB.76.073101 Google Scholar
37. Balanis, C., Antenna Theory: Analysis and Design/Constantine A. Balanis, J. Wiley, New York, 1982.
38. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Proceedings of the American Physical Society, Vol. 69, 674 American Physical Society, Apr. 1946.
39. Lemoult, F., M. Fink, and G. Lerosey, "Revisiting the wire medium: An ideal resonant metalens," Waves in Random and Complex Media, Vol. 21, No. 4, 591-613, 2011.
doi:10.1080/17455030.2011.611836 Google Scholar