1. Itoh, T. and C. Caloz, Electromagnetic Metamaterials, Wiley, New York, 2005.
2. Pendry, J. B. and D. R. Smith, "Reversing light with negative refraction," Phys. Today, Vol. 57, No. 6, 37-41, 2004.
doi:10.1063/1.1784272 Google Scholar
3. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, Oxford, 2009.
4. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nature Photon., Vol. 5, No. 9, 523-530, 2011. Google Scholar
5. Fang, N., D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, "Ultrasonicmetamaterials with negative modulus," Nature Mater., Vol. 5, No. 6, 452-456, 2006.
doi:10.1038/nmat1644 Google Scholar
6. Zhang, S., L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett., Vol. 102, No. 19, 194301, 2009.
doi:10.1103/PhysRevLett.102.194301 Google Scholar
7. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 102, No. 2, 024301, 2011.
doi:10.1103/PhysRevLett.106.024301 Google Scholar
8. Smith, D. R., S. Schultz, P. Marko·s, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
9. Cho, K., Reconstruction of Macroscopic Maxwell Equations, Springer, Berlin, 2010.
10. Iwanaga, M., "Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs," Opt. Express, Vol. 18, No. 15, 15389-15398, 2010.
doi:10.1364/OE.18.015389 Google Scholar
11. Iwanaga, M., "Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab," Phys. Rev. B, Vol. 82, No. 15, 155402, 2010.
doi:10.1103/PhysRevB.82.155402 Google Scholar
12. Iwanaga, M., N. Ikeda, and Y. Sugimoto, "Enhancement of local electromagnetic fields in plasmonic crystals of coaxial metallic nanostructures ," Phys. Rev. B, Vol. 85, No. 4, 045427, 2012.
doi:10.1103/PhysRevB.85.045427 Google Scholar
13. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, No. 13, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404 Google Scholar
14. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett., Vol. 31, No. 12, 1800-1802, 2006.
doi:10.1364/OL.31.001800 Google Scholar
15. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780nm wavelength," Opt. Lett., Vol. 32, No. 1, 53-55, 2007.
doi:10.1364/OL.32.000053 Google Scholar
16. Dolling, G., M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett., Vol. 32, No. 5, 551-553, 2007.
doi:10.1364/OL.32.000551 Google Scholar
17. Chettiar, U. K., A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: Double negative at 813nm and single negative at 772 nm ," Opt. Lett., Vol. 32, No. 12, 1671-1673, 2007.
doi:10.1364/OL.32.001671 Google Scholar
18. Liu, N., L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials," Adv. Mater., Vol. 20, No. 20, 3859-3865, 2008.
doi:10.1002/adma.200702950 Google Scholar
19. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376-379, 2008.
doi:10.1038/nature07247 Google Scholar
20. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, No. 22, 3478-3450, 2009.
doi:10.1364/OL.34.003478 Google Scholar
21. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, No. 7307, 735-738, 2010.
doi:10.1038/nature09278 Google Scholar
22. Mary, A., S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Phys. Rev. Lett., Vol. 101, No. 10, 103902, 2008.
doi:10.1103/PhysRevLett.101.103902 Google Scholar
23. Parsons, J., E. Hendry, J. R. Sambles, and W. L. Barnes, "Localized surface-plasmon resonances and negative refractive index in nanostructured electromagnetic metamaterials," Phys. Rev. B, Vol. 80, No. 24, 245117, 2009.
doi:10.1103/PhysRevB.80.245117 Google Scholar
24. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, No. 6, 067402, 2011.
doi:10.1103/PhysRevLett.106.067402 Google Scholar
25. Yang, J., C. Sauvan, H. T. Liu, and P. Lalanne, "Theory of fishnet negative-index optical metamaterials," Phys. Rev. Lett., Vol. 107, No. 4, 043903, 2011.
doi:10.1103/PhysRevLett.107.043903 Google Scholar
26. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012. Google Scholar
27. Iwanaga, M., "In-plane plasmonic modes of negative group velocity in perforated waveguides," Opt. Lett., Vol. 36, No. 13, 2504-2506, 2011.
doi:10.1364/OL.36.002504 Google Scholar
28. Li, L., "New formulation of the fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A, Vol. 14, No. 10, 2758-2767, 1997.
doi:10.1364/JOSAA.14.002758 Google Scholar
29. Li, L., "Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996.
doi:10.1364/JOSAA.13.001024 Google Scholar
30. Rakic, A. D., A. B. Djuru·sic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271 Google Scholar
31. Fan, S. and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B, Vol. 65, No. 23, 235112, 2002.
doi:10.1103/PhysRevB.65.235112 Google Scholar
32. Swihart, J. C., "Field solution for a thin-film superconducting strip transmission line," J. Appl. Phys., Vol. 32, No. 3, 461-469, 1961.
doi:10.1063/1.1736025 Google Scholar
33. Economou, E. N., "Surface plasmons in thin films," Phys. Rev., Vol. 182, No. 2, 539-554, 1969.
doi:10.1103/PhysRev.182.539 Google Scholar
34. Sakoda, K., Optical Properties of Photonic Crystals, 2nd Ed., Springer, Berlin, 2005.
35. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Sauders College, Fort Worth, 1976.