1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773
2. Pendry, J. B., A. J. Holden, D. J. Robbins, W. J. Stewart, "Low frequency plasmons in thin wire structures," J. Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007
3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002
4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
5. Zhang, Z. M. and C. J. Fu, "Unusual photo tunneling in the presence of a layer with a negative index," Appl. Phys. Lett., Vol. 80, 1097-1099, 2002.
doi:10.1063/1.1448172
6. Dong, W., L. Gao, and C.-W. Qiu, "Goos-Hänchen shift at the surface of chiral negative refractive media," Progress in Electromagnetics Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002
7. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2001.
doi:10.1103/PhysRevLett.85.3966
8. Chen, L., S. He, and L. Shen, "Finite-size effects of a left-handed material slab on the image quality," Phys. Rev. Lett., Vol. 92, 107404, 2004.
doi:10.1103/PhysRevLett.92.107404
9. Engheta, N., "Idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless. Propag. Lett., Vol. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576
10. Shen, L., S. He, and S. Xiao, "Stability and quality factor of a one-dimensional subwavelength cavity resonator containing a left-handed material," Phys. Rev. B, Vol. 69, 115111, 2004.
doi:10.1103/PhysRevB.69.115111
11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628
12. Choi, J. and C. Seo, "High-e±ciency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress in Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609
13. Shelby, R. A., D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 209, 77-79, 2001.
doi:10.1126/science.1058847
14. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489
15. Hu, L. B. and S. T. Chui, "Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials," Phys. Rev. B, Vol. 66, 085108, 2002.
doi:10.1103/PhysRevB.66.085108
16. Koschny, T., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Phys. Rev. B, Vol. 71, 121103(R, 2005.
17. Vendik, I., O. Vendik, and M. Odit, "Isotropic artificial media with simultaneously negative permittivity and permeability," Microwave Opt. Tech. Lett., Vol. 18, 2553-2556, 2006.
doi:10.1002/mop.22002
18. Guney, D. O., T. Koschny, and C. M. Soukoulis, "Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial ," Opt. Express, Vol. 18, 12348-12353, 2010.
doi:10.1364/OE.18.012348
19. Logeeswaran, V. J., M. S. Islam, M. L. Chan, D. A Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, "Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology," Mater. Res. Soc. Symp. Proc., Vol. 919, 0919-J02, 2006.
20. Oktel, M. Ö. and Ö E. Müstecapho·glu, "Electromagnetically induced left-handedness in a dense gas of three-level atoms," Phys. Rev. A, Vol. 70, 053806, 2004.
doi:10.1103/PhysRevA.70.053806
21. Shen, J. Q., Z. C. Ruan, and S. He, "How to realize a negative refractive index material at the atomic level in an optical frequency range?," J. Zhejiang Univ. Science (China), Vol. 5, 1322-1326, 2004.
doi:10.1631/jzus.2004.1322
22. Shen, J. Q., "Negatively refracting atomic vapor," J. Mod. Opt., Vol. 53, 2195-2205, 2006.
doi:10.1080/09500340600812966
23. Thommen, Q. and P. Mandel, "Electromagnetically induced left handedness in optically excited four-level atomic media," Phys. Rev. Lett., Vol. 96, 053601, 2006.
doi:10.1103/PhysRevLett.96.053601
24. Thommen, Q. and P. Mandel, "Left-handed properties of erbium-doped crystals," Opt. Lett., Vol. 31, 1803-1805, 2006.
doi:10.1364/OL.31.001803
25. Krowne, C. M. and J. Q. Shen, "Dressed-state mixed-parity transitions for realizing negative refractive index," Phys. Rev. A, Vol. 79, 023818, 2009.
doi:10.1103/PhysRevA.79.023818
26. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in 3D photonic metamaterials," Nature Photon., Vol. 5, 523-530, 2011.
27. Huang, Z., T. Koschny, and C. M. Soukoulis, "Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium," Phys. Rev. Lett., Vol. 108, 187402, 2012.
doi:10.1103/PhysRevLett.108.187402
28. Fang, A., Z. Huang, T. Koschny, and C. M. Soukoulis, "Overcoming the losses of a split ring resonator array with gain," Opt. Express, Vol. 19, 12688-12699, 2011.
doi:10.1364/OE.19.012688
29. Fang, A., T. Koschny, M. Wegener, and C. M. Soukoulis, "Self-consistent calculation of metamaterials with gain," Phys. Rev. B, Vol. 79, 241104(R), 2009.
30. Meinzer, N., M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, "Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain," Opt. Express, Vol. 18, 24140-24151, 2010.
doi:10.1364/OE.18.024140
31. Tassin, P., L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett., Vol. 102, 053901, 2009.
doi:10.1103/PhysRevLett.102.053901
32. Zhao, S. C., Z. D. Liu, and Q. X. Wu, "Negative refraction without absorption via both coherent and incoherent FIelds in a four-level left-handed atomic system ," Opt. Commun., Vol. 283, 3301-3304, 2010.
doi:10.1016/j.optcom.2010.04.054
33. Scully, M. O. and M. S. Zubairy, Quantum Optics, Chap. 5, Cambridge University Press, Cambridge, England, 1997.
34. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Chap. 4, 159-162, John Wiley & Sons, New York, 2001.
35. Cook, D. M., The Theory of the Electromagnetic Field, Chap. 11, Prentice-Hall, Inc., New Jersey, 1975.
36. Moseley, R. R., S. Shepherd, D.J. Fulton, B. D. Sinclair, and M. H. Dunn, "Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing ," Phys. Rev. Lett., Vol. 74, 670-673, 1995.
doi:10.1103/PhysRevLett.74.670
37. Wang, H., D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett., Vol. 87, 073601, 2001.
doi:10.1103/PhysRevLett.87.073601
38. Imamoglu, A., H. Schmidt, G. Woods, and . Deutsch, "Strongly interacting photons in a nonlinear cavity," Phys. Rev. Lett., Vol. 79, 1467-1470, 1997.
doi:10.1103/PhysRevLett.79.1467
39. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904
40. Jelinek, L., R. Marqués, F. Mesa, and J. D. Baena, "Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media," Phys. Review B, Vol. 77, 205110, 2008.
doi:10.1103/PhysRevB.77.205110
41. Silveirinha, M. G., P. A. Belov, and C. R. Simovski, "Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods," Opt. Lett., Vol. 33, 1726-1728, 2008.
doi:10.1364/OL.33.001726
42. Wu, J.-H., X.-G. Wei, D.-F. Wang, Y. Chen, and J.-Y. Gao, "Coherent hole-burning phenomenon in a Doppler broadened three-level ¤-type atomic system," J. Opt. B: Quantum Semiclass. Opt., Vol. 6, 54-58, 2004.
doi:10.1088/1464-4266/6/1/009