Vol. 132
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-02
Spatial Correlation of Multiple Antenna Arrays in Wireless Communication Systems
By
Progress In Electromagnetics Research, Vol. 132, 347-368, 2012
Abstract
This paper investigates the spatial correlation characteristics of multiple antenna arrays deployed in wireless communication systems. First, we derive a general closed-form formula for the spatial correlation function (SCF) of a multiple antenna array with arbitrary array configuration under uniform signal angular energy distribution. Based on this formula, we then explore the characteristics of the SCF for several multiple antenna arrays with different array geometries. It is found that a multiple antenna array with a three-dimensional (3-D) array geometry can reduce the magnitude of its SCF and hence, improve the ergodic channel capacity (ECC) of wireless communication systems. Accordingly, we present a method to find the optimum 3-D antenna array geometry for maximizing the ECC of a wireless communication system. This method develops a novel objective function to incorporate with a particle swarm optimization (PSO) for solving the resulting optimization problem. Simulation results are provided for confirming the validity and the effectiveness of the proposed method.
Citation
Ju-Hong Lee, and Ching-Chia Cheng, "Spatial Correlation of Multiple Antenna Arrays in Wireless Communication Systems," Progress In Electromagnetics Research, Vol. 132, 347-368, 2012.
doi:10.2528/PIER12080604
References

1. Naguib, A. F. and Adaptive antenna for CDMA wireless network, Ph.D. Thesis, Standford University, Palo Alto, CA, Aug. 1996.

2. Fulghun, T. and K. Molnar, "The Jakes fading model incorporating angular spread for a disk of scatters," Proc. IEEE Veh. Technol. Conference (VTC'98), 489-493, May 1998.

3. Oestges, C. and B. Clerckx, MIMO Wireless Communications, Academic Press, Orlando, FL, 2007.
doi:10.1109/26.837052

4. Shiu, D., G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Trans. on Communications, Vol. 48, No. 3, 502-513, Mar. 2000.
doi:10.1109/25.892585

5. Fang, L., G. Bi, and A. C. Kot, "New method of performance analysis for diversity reception with correlated Rayleigh-fading signals ," IEEE Trans. on Vehicular Technology, Vol. 49, No. 5, 1807-1812, Sep. 2000.
doi:10.1109/49.995514

6. Abdi, A. and M. Kaveh, "A space-time correlation model for multielement antenna systems in mobile fading channels," IEEE J. on Selected Areas in Communications, Vol. 20, No. 3, 550-560, Apr. 2002.
doi:10.1109/TWC.2004.826332

7. Tsai, J.-A., M. Buehrer, and B. D.Woerner, "BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment," IEEE Trans. on Wireless Communications, Vol. 3, No. 3, 695-700, May 2004.

8. Cao, W. and W. Wang, "Effects of angular spread on smart antenna system with uniformly linear antenna array," Proc. of IEEE 10th Asia-Pacific Conference on Communications and 5th International Symposium on Multi-dimensional Mobil Communications, 174-178, Beijing, China, Aug. 2004.

9. Park, C.-K. and K.-S. Min, "A study on spatial correlation characteristic of array antenna for multi antenna system," Proc. of IEEE Asia-Pacific Microwave Conference, Vol. 3, Dec. 4-7, 2005.

10. Schumacher, L., K. I. Pedersen, and P. E. Mogensen, "From antenna spacings to theoretical capacities --- Guidelines for simulating MIMO systems," Proc. IEEE 13th International Symposium on Personal, Indoor and Mobile Radio Communications, Vol. 2, 587-592, Lisboa, Portugal, Sep. 2002.

11. Zhou, J., S. Sasaki, S. Muramatsu, H. Kikichi, and Y. Onozato, "Spatial correlation for a circular antenna array and its applications in wireless communications," Proc. of IEEE Global Telecommunications Conference, Vol. 2, 1108-1113, San Francisco, CA, USA, Dec. 2003.
doi:10.1109/4234.1001656

12. Tsai, J.-A., M. Buehrer, and B. D. Woerner, "Spatial fading correlation function of circular antenna arrays with Laplacian energy distribution ," IEEE Communications Letters, Vol. 6, 178-180, May 2002.

13. Tsai, J.-A. and B. D. Woerner, "The fading correlation function of a circular antenna array in mobile radio environment," Proc. of IEEE Global Telecommunications Conference, Vol. 5, 3232-3236, San Antonio, TX, USA, Nov. 2001.

14. Chan, S. C., H. H. Chen, and K. L. Ho, "Adaptive beamforming using uniform concentric circular arrays with frequency invariant characteristics," Proc. of IEEE International Symposium on Circuits and Systems, 4321-4324, May 2005.
doi:10.1109/TSP.2006.882109

15. Chan, S. C. and H. H. Chen, "Uniform concentric circular arrays with frequency-invariant characteristics --- Theory, design, adaptive beamforming and DOA estimation ," IEEE Trans. on Signal Processing, Vol. 55, No. 1, 165-177, Jan. 2007.
doi:10.1109/TCSI.2007.904648

16. Chen, H. H., S. C. Chan, and K. L. Ho, "Adaptive beamforming using frequency invariant uniform concentric circular arrays," IEEE Trans. on Circuits and Systems --- I, Vol. 54, No. 7, 1938-1949, Sep. 2007.

17. Lee, J.-H. and S.-I. Li, "Spatial correlation characteristics of antenna systems using uniform concentric ring arrays," Proc. of The 16th International Conference on Digital Signal Processing, Santorini, Greece, Jul. 2009.

18. Eggers, P. C. F., I. Z. Kovác, and K. Olesen, "Penetration effects on XPD with GSM 1800 handset antennas, relevant for BS polarization diversity for indoor coverage," Proc. IEEE Vehicular Technology Conference, Vol. 13, 1959-1963, Ottawa, Canada, May 1998.
doi:10.1109/8.833062

19. Kuchar, A., J. P. Rossi, and E. Bonek, "Directional macro-cell channel characterization from urban measurements," IEEE Trans. on Antennas and Propag., Vol. 48, No. 2, 137-146, Feb. 2000.
doi:10.1109/8.564093

20. Fulh, J., J. P. Rossi, and E. Bonek, "High-resolution 3-D direction-of-arrival determination for urban mobile radio," IEEE Trans. on Antennas and Propag., Vol. 45, No. 4, 672-682, Apr. 1997.
doi:10.1109/LAWP.2003.819666

21. Yong, S. K. and J. S. Thompson, "A three-dimensional spatial fading correlation model for uniform rectangular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 182-185, 2003.
doi:10.1109/TWC.2005.858335

22. Yong, S. K. and J. S. Thompson, "Three-dimensional spatial fading correlation models for compact MIMO receivers," IEEE Trans. on Wireless Communications, Vol. 4, No. 6, 2856-2869, Nov. 2005.

23. Saeed, M. A., B. M. Ali, S. Khatun, M. Ismail, and A. Rostami, "Spatial and temporal fading correlation of uniform linear antenna array in three-dimensional signal scattering ," Proc. of Asia-Paci¯c Conference on Communications, 425-429, Perth, Australia, Oct. 2005.
doi:10.1109/LAWP.2008.919344

24. Raj, J. S. K., A. S. Prabu, N. Vikram, and J. Schoebel, "Spatial correlation and mimo capacity of uniform rectangular dipole arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 97-100, 2008.
doi:10.1109/18.985982

25. Chuah, C.-N., J. M. Kahn, and D. N. C. Tse, "Capacity scaling in MIMO wireless systems under correlated fading," IEEE Trans. Information Theory, Vol. 48, No. 3, 637-650, Mar. 2002.
doi:10.1109/26.837052

26. Shiu, D.-S., G. J. Foschini, M. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Trans. on Communications, Vol. 48, No. 3, 502-513, Mar. 2000.
doi:10.1109/JSAC.2003.810294

27. Goldsmith, A., S. A. Jafar, N. Jindal, and S. Vishwanath, "Capacity limits of MIMO channel," IEEE Journal on Selected Area in Communications, Vol. 21, No. 5, 684-702, Jun. 2003.

28. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proc. of IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, 1995.
doi:10.2529/PIERS080908052538

29. Kawakami, K. and Z. Meng, "Improvement of particle swarm optimization," PIERS Online, Vol. 5, No. 3, 261-264, 2009.
doi:10.1109/TWC.2006.1576538

30. Kang, M. and M. S. Alouini, "Capacity of correlated MIMO Rayleigh channels," IEEE Trans. on Wireless Communications, Vol. 5, No. 1, 143-155, Jan. 2006.

31. Kiessling, M., J. Speidel, I. Viering, and M. Reinhardt, "A closed-form bound on correlated MIMO channel capacity," Proc. of IEEE 56th Fall Vehicular Technology Conference, Vol. 2, 859-863, 2002.
doi:10.1109/TAP.2005.851762

32. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. on Antennas and Propag., Vol. 53, No. 8, 2674-2679, Aug. 2006.
doi:10.1109/TWC.2006.1687741

33. Shin, H., M. Z. Win, J. H. Lee, and M. Chiani, "On the capacity of doubly correlated MIMO channels," IEEE Trans. on Wireless Communications, Vol. 5, No. 8, 2253-2265, Aug. 2006.
doi:10.2528/PIERC08121405

34. Mangoud, M. A.-A., "Optimization of channel capacity for indoor MIMO systems using genetic algorithm," Progress In Electromagnetic Research C, Vol. 7, 137-150, 2009.

35. Van Trees, H. L., Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory, Wiley-Interscience, John-Wiley and Sons, New York, 2002.
doi:10.1109/8.999632

36. Andersen, J. B. and K. I. Pedersen, "Angle-of-arrival statistics for low resolution antenna," IEEE Trans. on Antennas and Propag., Vol. 50, No. 3, 391-395, Mar. 2002.

37. Lee, J.-H. and S.-I. Li, "Three-dimensional spatial correlation characteristics of concentric ring antenna array systems," Proc. of the 17th International Conference on Digital Signal Processing, T2B.4, 2011.