1. Jamieson, D. G. and J. H. Greenberg, "Positron emission tomography of the brain," Computerized Medical Imaging and Graphics, Vol. 13, No. 1, 61-79, 1989.
doi:10.1016/0895-6111(89)90079-7 Google Scholar
2. Ollinger, J. M. and J. A. Fessler, "Positron-emission tomography," IEEE Signal Processing Magazine, Vol. 14, No. 1, 43-55, 1997.
doi:10.1109/79.560323 Google Scholar
3. Conti, M., et al. "First experimental results of time-of-flight reconstruction on an LSO PET scanner," Physics in Medicine and Biology, Vol. 50, 4507-4526, 2005.
doi:10.1088/0031-9155/50/19/006 Google Scholar
4. Muehllehner, G. and J. S. Karp, "Positron emission tomography," Physics in Medicine and Biology, Vol. 51, R117-R137, 2006.
doi:10.1088/0031-9155/51/13/R08 Google Scholar
5. Surti, S. and J. S. Karp, "Design considerations for a limited angle, dedicated breast, TOF PET scanner," Physics in Medicine and Biology, Vol. 53, 2911-2921, 2008.
doi:10.1088/0031-9155/53/11/010 Google Scholar
6. Mallat, S., A Wavelet Tour of Signal Processing, Academic-Press, 1998.
7. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Prcoessing, Vol. 54, 4311, Nov. 2006.
doi:10.1109/TSP.2006.881199 Google Scholar
8. Lee, K., S. Tak, and J. Ye, "A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion," IEEE Trans. Medical Imaging, Vol. 30, 1076-1089, May 2011. Google Scholar
9. Ravishankar, S. and Y. Bresler, "MR image reconsruction from highly undersampled K-space data by dictionary learning," IEEE Trans. Medical Imaging, Vol. 30, 1028-1041, 2011.
doi:10.1109/TMI.2010.2090538 Google Scholar
10. Bouman, C. and K. Sauer, "A generalized Gaussian image model for edge-perserving map estimation," IEEE Trans. Signal Processing, Vol. 2, 296-310, Jul. 1993. Google Scholar
11. Rudin, L., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physics D, Vol. 60, 259-268, Jul. 1992.
doi:10.1016/0167-2789(92)90242-F Google Scholar
12. Unser, M. and P. Tafti, "Stochastic models for sparse and piecewise-smooth processing," IEEE Trans. Signal Processing, Vol. 59, 989-1006, Mar. 2011.
doi:10.1109/TSP.2010.2091638 Google Scholar
13. Karahanoglu, F., I. Bayram, and D. van de Ville, "A signal processing approach to generalized 1-D total variation," IEEE Trans. Signal Processing, Vol. 59, 5265-5274, Nov. 2011.
doi:10.1109/TSP.2011.2164399 Google Scholar
14. Rodriguez, P. and B. Wohlberg, "Efficient minimization method for a generalized total variation functional," IEEE Trans. Image Processing, Vol. 18, 322-332, Feb. 2009.
doi:10.1109/TIP.2008.2008420 Google Scholar
15. Candes, E., J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., Vol. 59, 1027-1223, 2006. Google Scholar
16. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, 489-509, Feb. 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
17. Lustig, M., D. Donoho, and J. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Reson. Med., Vol. 58, 1182-1195, Apr. 2007.
doi:10.1002/mrm.21391 Google Scholar
18. Bian, J., J. Siewedsen, X. Han, et al. "Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT," Phys. Med. Biol., Vol. 55, 6575, 2010.
doi:10.1088/0031-9155/55/22/001 Google Scholar
19. Han, X., J. Bian, D. Eaker, et al. "Algorithm-enabled low-dose micro-CT imaging," IEEE Trans. Medical Imaging, Vol. 30, 606-620, Mar. 2011. Google Scholar
20. Harmany, Z. T., R. F. Marcia, and R. M. Willett, "Sparsity-regularized photon-limited imaging," IEEE International Symposium on Biomedical Imaging from Nano to Macro, 772-775, 2010.
doi:10.1109/ISBI.2010.5490062 Google Scholar
21. Wang, G. and J. Qi, "Direct reconstruction of dynamic PET parameteric images using sparse spectral representation," IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 867-870, 2009.
doi:10.1109/ISBI.2009.5193190 Google Scholar
22. Ahthoine, S., J. F. Aujol, Y. Broursier, and C. Melot, "On the efficiency of proximal methods for CBCT and PET reconstruction with sparsity constraint," 4th Workshop on Signal Processing with Adaptive Sparse Structured Representations, 25, 2011. Google Scholar
23. Meinshausen, N. and B. Yu, "LASSO-type recovery of sparse representations for high-dimensional data," Annals of Statistics, Vol. 37, 246-270, 2009.
doi:10.1214/07-AOS582 Google Scholar
24. Zhu, C., "Stable recovery of sparse signals via regularized minimization," IEEE Trans. Information Theory, Vol. 54, 3364-3367, Jul. 2008. Google Scholar
25. Mallon, A. and P. Grangeat, "Three-dimensional PET reconstruction with time-of-flight measurement," Phys. Med. Biol., Vol. 37, 717-729, 1992.
doi:10.1088/0031-9155/37/3/016 Google Scholar
26. Cho, S., S. Ahn, Q. Li, and R. Leahy, "Analytical properties of time-of-flight PET data," Phys. Medi. Biol., Vol. 53, 2809-2821, 2008.
doi:10.1088/0031-9155/53/11/004 Google Scholar
27. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imaging Sciences, Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542 Google Scholar
28. Richter, S. and R. De Carlo, "Continuation methods: Theory and applications," IEEE Transactions on Automatic Control, Vol. 28, No. 6, 660-665, 1983.
doi:10.1109/TAC.1983.1103294 Google Scholar
29. Wang, Z. and A. C. Bovik, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Processing, Vol. 13, No. 4, 1-14, 2004.
doi:10.1109/TIP.2003.819861 Google Scholar
30. Zhdanov, M. and E. Tolstaya, "Minimum support nonlinear parameterization in the solution of a 3D magnetotelluric inverse problem," Inverse Problems, Vol. 20, 937-952, 2004.
doi:10.1088/0266-5611/20/3/017 Google Scholar
31. Lois, C., et al. "An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging," The Journal of Nuclear Medicine, Vol. 51, No. 2, 237-245, 2010.
doi:10.2967/jnumed.109.068098 Google Scholar
32. Daubechies, I., et al. "Iteratively re-weighted least squares minimization for sparse reconvery," Communications of Pure and Applied Mathematics, Vol. 63, No. 1, 1-38, 2010.
doi:10.1002/cpa.20303 Google Scholar
33. Vogel, C. R., "Non-convergence of the L-curve regularization parameter selection method," Inverse Problems, Vol. 12, 535-547, 1996.
doi:10.1088/0266-5611/12/4/013 Google Scholar
34. Golub, G. H., M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics, Vol. 21, No. 2, 215-223, 1979.
doi:10.1080/00401706.1979.10489751 Google Scholar
35. Li, K.-C., "From STEIN's unbiased risk estimates to the method of generalized cross validation," The Annals of Statistics, Vol. 13, No. 4, 1362-1377, 1985.
doi:10.1214/aos/1176349742 Google Scholar