Vol. 135
Latest Volume
All Volumes
2012-12-18
Sparse Array Microwave 3-d Imaging: Compressed Sensing Recovery and Experimental Study
By
Progress In Electromagnetics Research, Vol. 135, 161-181, 2013
Abstract
Microwave array 3-D imaging is an emerging technique capable of producing a 3-D map of scattered electric fields. Its all-weather and large scene imaging features make it an attractive powerful tool for target detection and feature extraction. Typically, a microwave array 3-D imaging system based on the classical sampling theory requires a large dense 2-D antenna array, which may suffer from a very high cost. To reduce the number of the antenna array elements, this paper surveys the use of compressed sensing recovery and sparse measurement strategies for microwave array 3-D imaging. Combining with the typical spatial sparsity of the underlying scene, we pose the sparse array microwave 3-D imaging as finding sparse solutions to under-determined linear equations. Further, to reduce the computational of the compressed sensing recovery with the large-scale echoes data, we divide the underlying 3-D scene into a series of equal-range 2-D slices, and deal with these slices separately using the orthogonal matching pursuit (OMP) algorithm. Lastly, the performance of the presented compressed sensing approach is verified by an X-band microwave array 3-D imaging system. The experimental results demonstrate that the compressed sensing approach can produce a better resolution 3-D image of the observed scatterers compared with the conventional method, especially in the case of very sparse activate antenna array.
Citation
Shun-Jun Wei, Xiao-Ling Zhang, Jun Shi, and Ke-Fei Liao, "Sparse Array Microwave 3-d Imaging: Compressed Sensing Recovery and Experimental Study," Progress In Electromagnetics Research, Vol. 135, 161-181, 2013.
doi:10.2528/PIER12082305
References

1. Peng, , X., W. Tan, Y. Wang, W. Hong, and Y. Wu, "Convolution back-projection imaging algorithm for downward-looking sparse linear array three dimensional synthetic aperture radar," Progress In Electromagnetics Research, Vol. 129, 287-313, 2012.
doi: --- Either ISSN or Journal title must be supplied.

2. Mohammadpoor, , M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection ," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

3. Tan, , W., W. Hong, Y. Wang, and Y. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011.
doi:10.2528/PIER10100307

4. Huang, , Y., Y. Liu, Q. H. Liu, and J. Zhang, "Improved 3-d GPR detection by NUFFT combined with MPD method," Progress In Electromagnetics Research, Vol. 103, 185-199, 2010.
doi:10.2528/PIER10021005

5. Deng, , M. Y. and X. Liu, "Electromagnetic imaging methods for nondestructive evaluation applications," Sensors , Vol. 11, No. 12, 11774-11808, 2011.
doi:10.3390/s111211774

6. Zhou, , H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

7. Wei, , H.-Y. and M. Soleimani, "Three dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 2945, 2012.

8. Soleimani, , M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

9. Ren, , X. Z., L. H. Qiao, and Y. Qin, "A three-dimensional imaging algorithm for tomography SAR based on improved interpolated array transform1 ," Progress In Electromagnetics Research, Vol. 120, 181-193, 2011.

10. Liao, , K. F., X.-L. Zhang, and J. Shi, "Fast 3-d microwave imaging method based on subaperture approximation," Progress In Electromagnetics Research, Vol. 126, 333-353, 2012.
doi:10.2528/PIER12011106

11. Yu, , L. and Y. Zhang, "A 3D target imaging algorithm based on two-pass circular SAR observations," Progress In Progress In, Vol. 122, 341-360, 2012.

12. Shi, , J., X.-L. Zhang, J.-Y. Yang, et al. "APC trajectory design for `One-Active' linear-array three-dimensional imaging SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 3, 1470-1486, 2010.
doi:10.1109/TGRS.2009.2031430

13. Shi, , J., X. L. Zhang, J. Yang, and K. Liao, "Experiment results on one-active LASAR," IEEE Radar Conference, 1-4, 2009.

14. Juan, , L. S., F. G. Joaquim, and , "3-D radar imaging using range migration techniques," IEEE Transactions on Antennas and Propagation,, Vol. 48, No. 5, 2000.

15. Zhang, D. H., X. L. Zhang, and , "Downward-looking 3-D linear array SAR imaging based on chirp scaling algorithm," Asian-Pacific Conference on SAR , 1043-1046, 2009.

16. Qi, , Y., W. Tan, Y. Wang, W. Hong, and Y. Wu, "3D bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry ," Progress In Electromagnetics Research, Vol. 121, 409-431, 2011.
doi:10.2528/PIER11090205

17. Li, , S., B. Ren, H.-J. Sun, W. Hu, and X. Lv, "Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging," Progress In Electromagnetics Research,, Vol. 124, 35-53, 2012.
doi:10.2528/PIER11112406

18. Montefusco, L. B., D. Lazzaro, S. Papi, and C. Guerrini, "A fast compressed sensing approach to 3D MR image reconstruction," IEEE Transactions on Medical Imaging,, Vol. 30, No. 5, 2011.
doi:10.1109/TMI.2010.2068306

19. Berger, , C. R., S. L. Zhou J. C. Preisig, and P. Willett, "Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing ," IEEE Transactions on Signal Processing, Vol. 58, No. 3, 2010.
doi:10.1109/TSP.2009.2038424

20. Mahalanobis, A., R. Muise, and , "Object specfic image reconstruction using a compressive sensing architecture for application in surveillance systems," IEEE Transactions on Aerospace and Electronic System, Vol. 45, No. 3, 2009.
doi:10.1109/TAES.2009.5259191

21. Wei, , S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research,, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

22. Patel, , V. M., G. R. Easley, and D. M. Healy, "Compressed synthetic aperture radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 244-254, 2010.
doi:10.1109/JSTSP.2009.2039181

23. Zhu, X.-X. and R. Bamler, "Tomographic SAR inversion by L1-norm regularization the compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2010.
doi:10.1109/TGRS.2010.2048117

24. Budillon, , A., A. Evangelista, and G. Schirinzi, "Three-dimensional SAR focussing from multipass signals using compres-sive sampling ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 488-499, 2010.
doi:10.1109/TGRS.2010.2054099

25. Chen, , J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna, ," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
doi:10.2528/PIER11121101

26. Li, J., S. Zhang, and J. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307

27. Oliveri, , G., P. Rocca, and A. Massa, "A Bayesian-compressive-sampling-based inversion for imaging sparse scatterers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3993-4006, 2011.
doi:10.1109/TGRS.2011.2128329

28. Poli, L., G. Oliveri, and A. Massa, "Microwave imaging within the first-order born approximation by means of the contrast-field Bayesian compressive sensing," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2865-2879, 2012.
doi:10.1109/TAP.2012.2194676

29. Wei, , S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research,, Vol. 117, 299-319, 2011.

30. Donoho, , D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

31. Candes, E. J. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, 21-30, 2008.
doi:10.1109/MSP.2007.914731

32. Candes, , E. J., J. K. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

33. Tropp, , J. A., "Greed is good: Algrorithm results for sparse approximation ," IEEE Trans. Inf. Theory, Vol. 50, No. 10, 2231-2242, 2004.
doi:10.1109/TIT.2004.834793

34. Needell, , D. and R. Vershynin, "Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit," Found. Comput. Math., Vol. 9, No. 3, 317-334, 2009.
doi:10.1007/s10208-008-9031-3

35. Fornasier, , M. and H. Rauhut, "Compressive sensing," Handbook of Mathematical Methods in Imaging, Vol. 1, 187-229, 2010.

36. Samadi, , S., M. Cetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar, Sonar and Navigation, Vol. 5, No. 2, 182-193, 2011.
doi:10.1049/iet-rsn.2009.0235