1. Grcev, L. and F. Dawalibi, "An electromagnetic model for transients in grounding systems," IEEE Trans. on Power Delivery, Vol. 5, No. 4, 1773-1780, November 1990.
doi:10.1109/61.103673 Google Scholar
2. Grcev, L., "Computer analysis of transient voltage in large grounding systems ," IEEE Trans. on Power Delivery, Vol. 11, No. 2, 815-823, April 1996.
doi:10.1109/61.489339 Google Scholar
3. Grcev, L. and D. Hristov, "More accurate modeling of earthing systems transient behaviour," 15th International Telecommunications Energy Conference, INTELEC, Vol. 2, 167-173, Paris, France, 1993. Google Scholar
4. Visacro, S. F., "Modeling of earthing systems for lightning protection applications, including propagation effects," ICLP, Berlin, Germany, 1992. Google Scholar
5. Johny, M., "Recommendation for grounding systems in lightning protection systems," ISEPQ, Vol. 31, Sup. 2, 5-10, Asuncion, Paraguay, October 2011. Google Scholar
6. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and W. F. Wan Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic fields at intermediate distances from lightning channel," Progress In Electromagnetics Research, Vol. 110, 329-352, 2010.
doi:10.2528/PIER10080801 Google Scholar
7. Gomes, C. and Z. A. Zb. Kadir, "Protection of naval systems against electromagnetic effects due to lightning," Progress In Electromagnetics Research, Vol. 113, 333-349, 2011. Google Scholar
8. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011. Google Scholar
9. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011. Google Scholar
10. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditional-stable FDTD method with controlling parameters ," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512 Google Scholar
11. Sirenko, K., "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER10102707 Google Scholar
12. Xiao, S.-Q., Z. H. Shao, and B.-Z. Wang, "Application of the improved matrix type FDTD method for active antenna analysis," Progress In Electromagnetics Research, Vol. 100, 245-263, 2010.
doi:10.2528/PIER09112204 Google Scholar
13. Cao, D.-A. and Q.-X. Chu, "FDTD analysis of chiral discontinuities in waveguides," Progress In Electromagnetics Research Letters, Vol. 20, 19-26, 2011. Google Scholar
14. Ai, X., Y. Han, C. Y. Li, and X.-W. Shi, "Analysis of dispersion relation of piecewise linear recursive convolution FDTD method for space-varying plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011. Google Scholar
15. Silva, A. O., R. Bertholdo, M. G. Schiavetto, B.-H. V. Borges, S. J. L. Ribeiro, Y. Messaddeq, and M. A. Romero, "Comparative analysis between experimental characterization results and numerical FDTD modeling of self-assembled photonic crystals," Progress In Electromagnetics Research B, Vol. 23, 329-342, 2010.
doi:10.2528/PIERB10060404 Google Scholar
16. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606 Google Scholar
17. Lu, J., Z. Fan, D.-Z. Ding, and R.-S. Chen, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010. Google Scholar
18. Tanabe, K., "Novel method for analyzing dynamic behavior of grounding systems based on the finite-difference time-domain method," IEEE Power Engineering Review, Vol. 21, 55-57, 2001.
doi:10.1109/39.948615 Google Scholar
19. Tannus, T. E., R. O. dos Santos, R. M. S. de Oliveira, and C. L. da Silva Souza, "Transient analysis of parameters governing grounding systems by the FDTD method," IEEE Latin America Transactions, Vol. 4, No. 1, 55-61, March 2006.
doi:10.1109/TLA.2006.1642450 Google Scholar
20. Xiong, R., B. Chen, Y.-F. Mao, W. Deng, Q. Wu, and Y.-Y. Qiu, "FDTD modeling of the earthing conductor in the transient grounding resistance analysis," IEEE Antennas and Wireless Propagat. Lett., Vol. 35, 1248-1257, August 2012. Google Scholar
21. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Lett., Vol. 27, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
22. Mao, Y.-F., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for the oblique incidence programs on periodic structures ," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012. Google Scholar
23. Lei, J. Z., C. H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905 Google Scholar
24. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3-D subgridding FDTD algorithm for large simulation," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011. Google Scholar
25. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603 Google Scholar
26. Ergul, O., "Parallel implementation of MLFMA for homgeneous objects with various material properties," Progress In Electromagnetics Research, Vol. 121, 505-520, 2010. Google Scholar
27. Yang, D., J. Xiong, C. Liao, and L. Jen, "A parallel FDTD algorithm based on domain decomposition method using the MPI library," PDCAT's, 730-733, 2003. Google Scholar
28. Berenger, J. P., "A perfectly matched layer for the absorption of the electromagnetic waves," J. Comput. Phys., 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
29. Chen, B., D. G. Fang, and B. H. Zhou, "Modified Berenger PML absorbing boundary condition for FD-TD meshes," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 11, 399-401, November 1995.
doi:10.1109/75.473529 Google Scholar
30. IEC 62305-3. ed.2.0, , Protection Against Lightning --- Part 3: Physical Damage to Structures and Life Hazard, 2004.