1. Sauer, C., M. Stanacevic, G. Cauwenberghs, and N. Thakor, "Power harvesting and telemetry in CMOS for implanted devices," IEEE Trans. on Circuits and Systems I, Vol. 52, No. 12, 2605-2613, Dec. 2005.
doi:10.1109/TCSI.2005.858183 Google Scholar
2. Opasjumruskit, K., T. Thanthipwan, O. Sathusen, P. Sirinamarattana, P. Gadmanee, E. Pootarapan, N. Wongkomet, A. Thanachayanont, and M. Thamsirianut, "Self-powered wire-less temperature sensors exploit RFID technology," IEEE Pervasive Computing, Vol. 5, No. 1, 54-61, Jan. 2006.
doi:10.1109/MPRV.2006.15 Google Scholar
3. Lu, H. M., C. Goldsmith, L. Cauller, and J.-B. Lee, "MEMS-based inductively coupled RFID transponders for implantable wireless sensor applications," IEEE Trans. on Magnetics, Vol. 43, No. 6, 2412-2414, Jun. 2007.
doi:10.1109/TMAG.2007.893802 Google Scholar
4. Occhiuzzi, C. and G. Marrocco, "The RFID technology for neurosciences: Feasibility of limbs' monitoring in sleep diseases," IEEE Trans. on Information Technology in Biomedicine, Vol. 14, No. 1, 37-43, Jan. 2010.
doi:10.1109/TITB.2009.2028081 Google Scholar
5. Vaz, A., A. Ubarretxena, I. Zalbide, D. Pardo, H. Solar, A. Garcia-Alonso, and R. Berenguer, "Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring," IEEE Trans. on Circuits and Systems II: Express Briefs, Vol. 57, No. 2, 95-99, Feb. 2010.
doi:10.1109/TCSII.2010.2040314 Google Scholar
6. Munnangi, S. R., G. Haobijam, M. Kothamasu, R. Paily, and R. S. Kshetrimayum, "CMOS capacitive pressure sensor design and integration with RFID tag for biomedical applications," TENCON 2008, 1-6, Hyderabad, Nov. 2008. Google Scholar
7. Todd, B., M. Phillips, S. Schultz, A. Hawkins, and B. Jensen, "Low-cost RFID threshold shock sensors," IEEE Sensor Journal, Vol. 9, No. 4, 464-469, Apr. 2009.
doi:10.1109/JSEN.2009.2014410 Google Scholar
8. Todd, B., M. Phillips, S. Schultz, A. Hawkins, and B. Jensen, "RFID threshold accelerometer," IEEE Instrumentation and Measurement Magazine, Vol. 12, No. 4, 14-18, Apr. 2009.
doi:10.1109/MIM.2009.5277928 Google Scholar
9. Sample, A., D. Yeager, P. Powledge, A. Mamishev, and J. Smith, "Design of an RFID-based battery-free programmable sensing platform," IEEE Trans. on Instrumentation and Measurement, Vol. 57, No. 11, 2608-2615, Nov. 2008.
doi:10.1109/TIM.2008.925019 Google Scholar
10. Bhattacharyya, R., C. Floerkemeier, and S. Sarma, "Low-cost, ubiquitous RFID-tag-antenna-based sensing," Proceedings of the IEEE, Vol. 98, No. 9, 1593-1600, Sep. 2010.
doi:10.1109/JPROC.2010.2051790 Google Scholar
11. Kim, M., K. Kim, and N. Chong, "RFID based collision-free robot docking in cluttered environment,", Vol. 110, 199-218, 2010. Google Scholar
12. Finkenzeller, K., RFID Handbook: Fundamentals and Applications in contactless smart cards and Identifcation, John Wiley & Sons, Inc., Publications, 2003.
13. Hagerty, J., F. Helmbrecht, W. McCalpin, R. Zane, and Z. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Transaction on Microwave Theory and Techniques, Vol. 52, No. 3, 1014-1024, Mar. 2004.
doi:10.1109/TMTT.2004.823585 Google Scholar
14. Costanzo, A., A. Romani, D. Masotti, N. Abizzani, and V. Rizzoli, "RF/baseband co-design of switching receivers for multiband microwave energy harvesting," Sensors and Actuators A: Physical, Vol. 179, 158-168, Jun. 2012.
doi:10.1016/j.sna.2012.02.005 Google Scholar
15. Cantatore, E., T. Geuns, G. Gelinck, E. Veenendaal, A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. de Leeuw, "A 13.56MHz RFID system based on organic transponders," IEEE Journal of Solid State Circuits, Vol. 42, No. 1, 84-92, Jan. 2007.
doi:10.1109/JSSC.2006.886556 Google Scholar
16. Subramanian, V., J. Frechet, P. Chang, D. Huang, J. Lee, S. Molesa, A. Murphy, D. Redinger, and S. Volkman , "Progress toward development of all-printed rfid tags: Materials, processes, and devices," Proceedings of the IEEE, Vol. 93, No. 7, 1330-1338, Jul. 2005.
doi:10.1109/JPROC.2005.850305 Google Scholar
17. Steudel, S., K. Myny, V. Arkhipov, C. Deibel, S. D. Vusser, J. Genoe, and P. Heremans, "50MHz rectifier based on an organic diode," Nature Materials, Vol. 4, 597-600, Aug. 2005.
doi:10.1038/nmat1434 Google Scholar
18. Fortunato, E., N. Correia, P. Barquinha, L. Pereira, G. Goncalves, and R. Martins, "High-performance flexible hybrid field-effect transistors based on cellulose fiber paper," IEEE Electron Device Letters, Vol. 29, No. 9, 988-990, Sep. 2008.
doi:10.1109/LED.2008.2001549 Google Scholar
19. Sekitani, T., Y. Noguchi, U. Zschieschang, H. Klauk, and T. Someya, "Organic transistors manufactured using inkjet technology with subfemtoliter accuracy," Proceedings of the National Academy of Sciences of the USA, Vol. 105, No. 13, 4976-4980, Apr. 2008.
doi:10.1073/pnas.0708340105 Google Scholar
20. Cardinali, M., L. Valentini, J. Kenny, and I. Mutlay, "Graphene based composites prepared through exfoliation of graphite platelets in methyl methacrylate/poly (methyl methacrylate)," Polymer International, Vol. 61, No. 7, 1079-1083, Jul. 2012.
doi:10.1002/pi.4180 Google Scholar
21. Cosseddu, P., S. Lai, M. Barbaro, and A. Bonfiglio, "Ultra-low voltage, organic thin film transistors fabricated on plastic substrates by a highly reproducible process," Applied Physics Letters, Vol. 100, No. 9, 093305-093305-5, Feb. 2012.
doi:10.1063/1.3691181 Google Scholar
22. Yang, L., A. Rida, R. Vyas, and M. Tentzeris, "RFID tag and RF structures on a paper substrate using inkjet-printing technology," IEEE Transaction on Microwave Theory and Techniques, Vol. 55, No. 12, 2894-2901, Dec. 2007.
doi:10.1109/TMTT.2007.909886 Google Scholar
23. Yang, L., L. J. Martin, D. Staiculescu, C. P. Wong, and M. Tentzeris, "Conformal magnetic composite RFID for wearable RF and bio-monitoring applications," IEEE Transaction on Microwave Theory and Techniques, Vol. 56, No. 12, 3223-3230, Dec. 2008.
doi:10.1109/TMTT.2008.2006810 Google Scholar
24. Lakafosis, V., A. Rida, R. Vyas, L. Yang, S. Nikolaou, and M. Tentzeris, "Towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags," Proceedings of the IEEE, Vol. 98, No. 9, 1601-1609, Sep. 2010.
doi:10.1109/JPROC.2010.2049622 Google Scholar
25. Orecchini, G., V. Palazzari, A. Rida, F. Alimenti, M. Tentzeris, and L. Roselli, "Design and fabrication of ultra-low cost radio frequency identification antennas and tags exploiting paper substrates and inkjet printing technology," IET Microwave Antennas & Propagation, Vol. 5, No. 8, 993-1001, Jun. 2011.
doi:10.1049/iet-map.2010.0344 Google Scholar
26. Nelo, M., A. Sowpati, V. K. Palukuru, J. Juuti, and H. Jantunen, "Utilization of screen printed low curing temperature cobalt nanoparticle ink for miniaturization of patch antennas," Progress In Electromagnetics Research, Vol. 127, 427-444, 2012.
doi:10.2528/PIER12031408 Google Scholar
27. Basirico, L., P. Cosseddu, A. Scida, B. Fraboni, G. Malliaras, and A. Bonfiglio, "Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors," Organic Electronics,, Vol. 13, No. 2, 244-248, Feb. 2012.
doi:10.1016/j.orgel.2011.11.010 Google Scholar
28. Jingtian, X., Y. Na, C. Wenyi, X. Conghui, W. Xiao, Y. Yuqing, J. Hongyan, and M. Hao, "Low-cost low-power UHF RFID tag with on-chip antenna," Journal of Semiconductors, Vol. 30, No. 7, 075012/1-075012/6, Jul. 2009. Google Scholar
29. Law, M., A. Bermak, and H. Luong, "A sub-μWembedded CMOS temperature sensor for RFID food monitoring application," IEEE Journal of Solid-State Circuits, Vol. 45, No. 6, 1246-1255, Jun. 2010.
doi:10.1109/JSSC.2010.2047456 Google Scholar
30. Snyder, E. J., Alien Technology Corporation White Paper: Fluidic Self Assembly, Alien Technology, 1999, [Online], Available: http://www.alientechnology.com.
31. Alimenti, F., M. Virili, G. Orecchini, P. Mezzanotte, V. Palazzari, M. Tentzeris, and L. Roselli, "A new contactless assembly method for paper substrate antennas and UHF RFID chips," IEEE Transaction on Microwave Theory and Techniques, Vol. 59, No. 3, 627-637, Mar. 2011.
doi:10.1109/TMTT.2010.2103210 Google Scholar
32. Hertleer, C., H. Rogier, L. Vallozzi, and L. V. Langenhove, "A textile antenna for off-body communication integrated into protective clothing for firefighters," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 4, 919-925, Apr. 2009.
doi:10.1109/TAP.2009.2014574 Google Scholar
33. Li, X., J. Liao, Y. Yuan, and D. Yu, "Eye-shaped segmented reader antenna for near-field UHF RFID applications," Progress In Electromagnetics Research, Vol. 114, 481-493, 2011. Google Scholar
34. Tiang, J.-J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011. Google Scholar
35. Amin, Y., Q. Chen, H. Tenhunen, and L.-R. Zheng, "Performance-optimized quadrate bowtie RFID antennas for cost-effective and eco-friendly industrial applications," Progress In Electromagnetics Research, Vol. 126, 49-64, 2012.
doi:10.2528/PIER12020805 Google Scholar
36. Amin, Y., Q. Chen, L.-R. Zheng, and H. Tenhunen, "Development and analysis of flexible UHF RFID antennas for 'green' electronics," Progress In Electromagnetics Research, Vol. 130, 1-15, 2012. Google Scholar
37. Viani, F., M. Salucci, F. Robol, G. Olivieri, and A. Massa, "Design of UHF RFID/GPS fractal antenna for logistic management," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 4, 480-492, 2012.
doi:10.1163/156939312800030640 Google Scholar
38. Springer, A., R. Weigel, A. Pohl, and F. Seifert, "Wireless identification and sensing using surface acoustic wave devices," Mechatronics, Vol. 9, No. 7, 745-756, Oct. 1999.
doi:10.1016/S0957-4158(99)00030-6 Google Scholar
39. Chang, K., Y. Kim, Y. Kim, and Y. Yoon, "Functional antenna integrated with relative humidity sensor using synthesised polyimide for passive rfid sensing," Electronic Letters, Vol. 43, No. 5, 1918-1923, May 2007. Google Scholar
40. Shrestha, S., M. Balachandran, M. Agarwal, V. Phoha, and K. Varahramyan, "A chipless RFID sensor system for cyber centric monitoring applications," IEEE Transaction on Microwave Theory and Techniques, Vol. 57, No. 5, 1303-1309, May 2009.
doi:10.1109/TMTT.2009.2017298 Google Scholar
41. Occhiuzzi, C., S. Cippitelli, and G. Marrocco, "Modeling, design and experimentation of wearable RFID sensor tag," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 8, 2490-2498, Aug. 2010.
doi:10.1109/TAP.2010.2050435 Google Scholar
42. Ramos, A., A. Lazaro, D. Girbau, and R. Villarino, "Time-domain measurement of time-coded UWB chipless RFID tags," Progress In Electromagnetics Research, Vol. 116, 313-331, 2011. Google Scholar
43. Nair, R., E. Perret, and S. Tedjini, "Temporal multi-frequency encoding technique for chipless RFID applications," IEEE MTT-S International Microwave Symposium Digest, 1-3, Montreal, QC, Canada, Jun. 2012. Google Scholar
44. Potyrailo, R., C. Surman, S. Go, Y. Lee, T. Sivavec, and W. Morris, "Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors," Journal of Applied Physics,, Vol. 106, No. 12, 124902-124902-6, Dec. 2009.
doi:10.1063/1.3247069 Google Scholar
45. Viikari, V. and H. Seppa, "RFID MEMS sensor concept based on intermodulation distortion," IEEE Sensor Journal, Vol. 9, No. 12, 1918-1923, Dec. 2009.
doi:10.1109/JSEN.2009.2031809 Google Scholar
46. Riley, J., A. Smith, D. Reynolds, A. Edwards, J. Osborne, I. Williams, N. Carreck, and G. Poppy, "Tracking bees with harmonic radar," Nature, Vol. 379, 29-30, Jan. 1996.
doi:10.1038/379029b0 Google Scholar
47. Helbing, S., M. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 3, 105-107, Mar. 2000.
doi:10.1109/75.845712 Google Scholar
48. Orecchini, G., L. Yang, A. Rida, F. Alimenti, M. Tentzeris, and L. Roselli, "Green technologies and RFID: Present and future," Applied Comput. Electromagnetics Society Journal, Vol. 25, No. 3, 230-238, Mar. 2010. Google Scholar
49. Steudel, S., S. D. Vusser, K. Myny, M. Lenes, J. Genoe, and P. Heremans, "Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags," Journal of Applied Physics, Vol. 99, No. 11, 114519, Jun. 2006.
doi:10.1063/1.2202243 Google Scholar
50. Valentini, L. and J. Kenny, "Novel approaches to developing carbon nanotube based polymer composites: Fundamental studies and nanotech applications," Polymer, Vol. 46, No. 17, 6715-6718, Aug. 2005.
doi:10.1016/j.polymer.2005.05.025 Google Scholar
51. Marinov, V., Y. Atanasov, A. Khan, D. Vaselaar, A. Halvorsen, D. Schulz, and D. Chrisey, "Direct-write vapor sensors on FR4 plastic substrates," IEEE Sensor Journal, Vol. 7, No. 6, 937-944, Jun. 2007.
doi:10.1109/JSEN.2007.895964 Google Scholar
52. Unander, T. and H.-E. Nilsson, "Characterization of printed moisture sensors in packaging surveillance applications," IEEE Sensor Journal, Vol. 9, No. 8, 922-928, Aug. 2009.
doi:10.1109/JSEN.2009.2024866 Google Scholar
53. Couderc, S., B. Kim, and T. Someya, "Cellulose-based composite as a raw material for flexible ans ultra-lightweight mechanical switch devices," IEEE 22nd International Conference on Micro Electro Mechanical Systems, 646-649, Sorrento, Italy, Jan. 2009. Google Scholar
54. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwave, Antennas & Propagation, Vol. 5, No. 8, 909-920, Jun. 2011.
doi:10.1049/iet-map.2010.0463 Google Scholar
55. Alimenti, F., P. Mezzanotte, L. Roselli, and R. Sorrentino, "A revised formulation of modal absorbing and matched modal source boundary conditions for the efficient FDTD analysis of waveguide structures," IEEE Transaction on Microwave Theory and Techniques, Vol. 48, No. 1, 50-59, Jan. 2000.
doi:10.1109/22.817471 Google Scholar
56. Alimenti, F., P. Mezzanotte, G. Tasselli, A. Battistini, V. Palazzari, and L. Roselli, "Development of low-cost 24-GHz circuits exploiting system-in-package (SiP) approach on commercial PCB technology," IEEE Trans. on Components, Packaging and Manufacturing Technology, Vol. 2, No. 8, 1265-1274, Aug. 2012.
doi:10.1109/TCPMT.2012.2184111 Google Scholar
57. Lovei, G., I. Stringer, C. Devine, and M. Cartellieri, "Harmonic radar - A method using inexpensive tags to study invertebrate movement on land," New Zealand Journal of Ecology, Vol. 21, No. 2, 187-193, 1997. Google Scholar
58. Colpitts, B. and G. Boiteau, "Harmonic radar transceiver design: Miniature miniature tags for insect tracking," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 11, 2825-2832, Nov. 2004.
doi:10.1109/TAP.2004.835166 Google Scholar
59. Tu, W.-H., M.-Y. Li, and K. Chang, "Broadband microstrip-coplanar stripline-fed circularly polarized spiral antenna," IEEE International Antennas and Propagation Symposium Digest, Albuquerque (USA), 3669-3672, Oct. 2006. Google Scholar
60. Maas, S., Nonlinear Microwave and RF Circuits, 2nd Edition, Artech-House, Inc., 2003.
61. Monti, G., R. de Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
doi:10.2528/PIER09071109 Google Scholar
62. Lyu, J.-J. and T.-L. Chen, "Optimize a RFID-based turbine main-tenance model - a preliminary study," IEEE International Conference on Industrial Engineering and Engineering Management, 501-505, Singapore, Nov. 2008. Google Scholar
63. Collin, R., Antennas and Radiowave Propagation, McGraw-Hill, 1985.