1. Iddan, G., G. Meron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, Vol. 405, 417, May 2000.
doi:10.1038/35013140 Google Scholar
2. Yu, M., "M2ATM capsule endoscopy: A breakthrough diagnostic tool for small intestine imaging ," Gastroenterology Nursing, Vol. 25, No. 1, 24-27, Feb. 2002.
doi:10.1097/00001610-200201000-00007 Google Scholar
3. Pan, G. and L. Wang, "Swallowable wireless capsule endoscopy: Progress and technical challenges," Gastroenterology Research and Practice, Vol. 2012, 1-9, 2011. Google Scholar
4. Theilmann, P., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012. Google Scholar
5. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011. Google Scholar
6. Phaebua, K., C. Phongcharoenpanich, M. Krairiksh, and T. Lertwiriyaprapa, "Path-loss prediction of radio wave propagation in an orchard by using modified UTD method," Progress In Electromagnetics Research, Vol. 128, 347-363, 2012. Google Scholar
7. Anang, K. A., P. B. Rapajic, R. Wu, L. Bello, and T. I. Eneh, "Cellular system information capacity change at higher frequencies due to propagation loss and system parameters," Progress In Electromagnetics Research B, Vol. 44, 191-221, 2012. Google Scholar
8. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than 2 GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012. Google Scholar
9. Van Laethem, B., F. Quitin, F. Bellens, C. Oestges, and P. de Doncker, "Correlation for multi-frequency propagaton in urban environments," Progress In Electromagnetics Research Letters, Vol. 29, 151-156, 2012.
doi:10.2528/PIERL11111701 Google Scholar
10. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515 Google Scholar
11. Gao, Y., Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, and C. Heng, "Low-power ultrawideband wireless telemetry transceiver for medical sensor applications ," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 3, 768-772, Mar. 2011.
doi:10.1109/TBME.2010.2097262 Google Scholar
12. Diao, S., Y. Zheng, Y. Gao, C. Heng, and M. Je, "A 7.2mW 15 Mbps ASK CMOS transmitter for ingestible capsule endoscopy," 2010 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 512-515, 2010.
doi:10.1109/APCCAS.2010.5775071 Google Scholar
13. Chi, B., J. Yao, S. Han, X. Xie, G. Li, and Z. Wang, "Low-power, high-data-rate wireless endoscopy transceiver," Microelectronics Journal, Vol. 38, 1070-1081, 2007.
doi:10.1016/j.mejo.2007.07.118 Google Scholar
14. Kim, K., S. Yun, S. Lee, S. Nam, Y. Yoon, and C. Cheon, "A design of a high-speed and high-e±ciency capsule endoscopy system," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 4, 1005-1011, Apr. 2012.
doi:10.1109/TBME.2011.2182050 Google Scholar
15. Izdebski, P. M., H. Rajagopalan, and Y. Rahmat-Samii, "Conformal ingestible capsule antenna: A novel chandelier meandered design," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 900-909, Apr. 2009.
doi:10.1109/TAP.2009.2014598 Google Scholar
16. Zulkefli, M. S., F. Malek, M. H. Mat, S. H. Ronald, and M. F. Jamlos, "A compact peanut-shaped printed antenna for bio-telemetric tablet system," 2012 International Conference on Biomedical Engineering (ICoBE), 454-457, Feb. 27-28, 2012. Google Scholar
17. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
18. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range of 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
19. Gabriely, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
20. Ibrani, M., L. Ahma, E. Hamiti, and J. Haxhibeqiri, "Derivation of electromagnetic properties of child biological tissues at radio frequencies," Progress In Electromagnetics Research Letters, Vol. 25, 87-100, 2011. Google Scholar
21. Peyman, A., "Dielectric properties of tissues; variation with age and their relevance in exposure of children to electromagnetic fields; state of knowledge," Progress in Biophysics and Molecular Biology, Vol. 107, 434-438, 2011.
doi:10.1016/j.pbiomolbio.2011.08.007 Google Scholar
22. Chirwa, L. C., P. A. Hammond, S. Roy, and D. R. S. Cumming, "Electromagnetic radiation from ingested sources in the human intestine between 150MHz and 1.2 GHz," IEEE Transactions on Biomedical Engineering, Vol. 50, No. 4, 484-492, Apr. 2003.
doi:10.1109/TBME.2003.809474 Google Scholar
23. Jung, J. H., S. W. Kim, Y. S. Kim, and S. Y. Kim, "Electromagnetic propagation from the intestine-ingested source in the human body model," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1683-1688, May 2010.
doi:10.1109/TAP.2010.2044338 Google Scholar
24. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011. Google Scholar
25. Guo, X.-M., Q.-X. Guo, W. Zhao, and W.-H. Yu, "Parallel FDTD simulation using NUMA acceleration technique," Progress In Electromagnetics Research Letters, Vol. 28, 1-8, 2012.
doi:10.2528/PIERL11101706 Google Scholar
26. Abbasi, Q. H., A. Sani, A. Alomainy, and Y. Hao, "Numerical characterization and modeling of subject-specific ultrawide-band body-centric radio channels and systems for healthcare applications," IEEE Transactions on Information Technology in Biomedicine, Vol. 16, No. 2, 221-227, Mar. 2012.
doi:10.1109/TITB.2011.2177526 Google Scholar
27. Takizawa, K., H. Hagiwara, and K. Hamaguchi, "Path-loss estimation of wireless channels in capsule endoscopy from X-ray CT images," 33rd Annual International Conference of the IEEE EMBS Boston, 2242-2245, Massachusetts, USA, Aug. 30-Sep. 3.
28. Stoa, S., R. Chavez-Santiago, and I. Balasingham, "An ultra wideband communication channel model for the human abdominal region," 2010 IEEE Globecom Workshops (GC Wkshps), 246-250, Dec. 6-10, 2010. Google Scholar
29. Katircioglu, O., H. Isel, O. Ceylan, F. Taraktas, and H. B. Yagci, "Comparing ray tracing, free space path loss and logarithmic distance path loss models in success of indoor localization with RSSI," 2011 19th Telecommunications Forum (TELFOR), 313-316, Nov. 22-24, 2011. Google Scholar
30. Pozer, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2005.
31. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centricwireless Communications, Artech House, 2006.
32. Iero, D. A. M., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207 Google Scholar
33. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402 Google Scholar
34. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005 Google Scholar
35. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702 Google Scholar
36. Ronald, S. H., M. F. B. A. Malek, S. I. Syed Hassan, E. M. Cheng, M. H. Mat, M. S. Zulkefli, and S. F. Maharimi, "Designing asian-sized hand model for SAR determination at GSM900/1800: Simulation part," Progress In Electromagnetics Research, Vol. 129, 439-467, 2012. Google Scholar
37. Vrbova, B. and J. Vrba, "Microwave thermotherapy in cancer treatment: Evaluation of homogeneity of SAR distribution," Progress In Electromagnetics Research, Vol. 129, 181-195, 2012. Google Scholar
38. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604 Google Scholar
39. Online Document AboutHUGO Human Body Model, available: www.sonnetsoftware.com/pdf/cst/human body and radiator.pdf-d radiator.pdf.
40. Gjonaj, E., M. Bartsch, M. Clemens, S. Schupp, and T. Weiland, "High-resolution human anatomy models for advanced electromagnetic field computations," IEEE Transactions on Magnetics , Vol. 38, No. 2, 357-360, Mar. 2002.
doi:10.1109/20.996096 Google Scholar
41. CST User Interface for Hugo Human Body Model, [online] available: http://www.cst.com/Content/Applications/Article/HUGO+Human+Body+Model.
42. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601 Google Scholar
43. Moglie, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506 Google Scholar
44. Ott, H. W., Electromagnetic Compatibility Engineering, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
45. Data sheet, Federal Communication Commission, [online], www.fcc.gov/fcc-bin/dielec.sh-09/2002.
46. Iqbal, M. N., M. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012. Google Scholar
47. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515 Google Scholar
48. Malek, M. F. B. A., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abd Aziz, A. R. Osman, P. J. Soh, A. A. H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011. Google Scholar
49. Pues, H., Y. Arien, F. Demming-Janssen, and J. Dauwen, "Numerical evaluation of absorber reflectivity in an artificial waveguide," 2009 20th International Zurich Symposium on Electromagnetic Compatibility, 409-412, Jan. 12-16, 2009.
50. Nornikman, H., M. F. B. A. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric study of the pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.2528/PIER10041003 Google Scholar
51. Alomainy, A. and Y. Hao, "Modeling and characterization of biotelemetric radio channel from ingested implants considering organ contents," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 999-1005, Apr. 2009.
doi:10.1109/TAP.2009.2014531 Google Scholar