1. Stratton, J. A., Electromagnetic Theory, IEEE Press, 2007.
2. Harrington, R. F., Time-harmonic Electromagnetic Fields, IEEE Press, 2001.
doi:10.1109/9780470546710
3. Collin, R. E., Field Theory of Guided Waves, 2nd Edition, IEEE Press, 2001.
4. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
doi:10.1109/9780470547052
5. Przezdziecki, S. and R. Hurd, "A note on scalar Hertz potentials for gyrotropic media," Applied Physics A: Materials Science & Processing, Vol. 20, 313-317, 1979. Google Scholar
6. Weiglhofer, W., "Scalarisation of Maxwell's equations in general inhomogeneous bianisotropic media," IEE Proceedings H: Microwaves, Antennas and Propagation, Vol. 134, No. 4, 357-360, Aug. 1987.
doi:10.1049/ip-h-2.1987.0070 Google Scholar
7. Weiglhofer, W. and I. Lindell, "Scalar potential formalism for uniaxial bianisotropic media," Digest of IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1586-1589, Seattle, Washington, Jun. 1994. Google Scholar
8. Weiglhofer, W. and I. Lindell, "Fields and potentials in general uniaxial bianisotropic media: I. Axial sources," International Journal of Applied Electromagnetics in Materials, Vol. 4, No. 3, 211-220, 1994. Google Scholar
9. Weiglhofer, W., "Fields and potentials in general uniaxial bianisotropic media: II. General sources and inhomogeneities," International Journal of Applied Electromagnetics and Mechanics, Vol. 7, No. 1, 1-9, 1996. Google Scholar
10. Weiglhofer, W. and S. Hansen, "Faraday chiral media revisited - I: Fields and sources," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 807-814, May 1999.
doi:10.1109/8.774134 Google Scholar
11. Weiglhofer, W., "Scalar Hertz potentials for nonhomogeneous uniaxial dielectric-magnetic mediums," International Journal of Applied Electromagnetics and Mechanics, Vol. 11, No. 3, 131-140, Jan. 2000. Google Scholar
12. Weiglhofer, W., "Hertz potentials in complex medium electromagnetics," Proceedings of 8th International Conference on Electromagnetics of Complex Media, Bianisotropics, 107-110, Lisbon, Portugal, 2000. Google Scholar
13. Weiglhofer, W. S., "Scalar Hertz potentials for linear bianisotropic mediums," Electromagnetic Fields in Unconventional Materials and Structures, 1-37, John Wiley, 2000. Google Scholar
14. Lindell, I. V. and F. Olyslager, "Potentials in bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 3-18, 2001.
doi:10.1163/156939301X00571 Google Scholar
15. Georgieva, N. and W. S. Weiglhofer, "Electromagnetic vector potentials and the scalarization of sources in a nonhomogeneous medium," Physical Review E, Vol. 66, No. 4, 046614, 2002.
doi:10.1103/PhysRevE.66.046614 Google Scholar
16. De Visschere, P., "Electromagnetic source transformations and scalarization in stratified gyrotropic media," Progress In Electromagnetics Research B, Vol. 18, 165-183, 2009.
doi:10.2528/PIERB09070904 Google Scholar
17. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.
18. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach, 2001.
19. Wieglhofer, W. S. and A. Lakhtakia, Introduction to Complex Mediums for Optics and Electromagnetics, SPIE Press, 2003.
20. Mackay, T. G. and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, 2010.
21. Tretyakov, S. A. and A. A. Sochava, "Novel uniaxial bianisotropic materials: Reflection and transmission in planar structures," Progress In Electromagnetics Research, Vol. 9, 157-179, 1994. Google Scholar
22. Chung, C. and K. Whites, "Effective constitutive parameters for an artificial uniaxial bianisotropic chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 10, 1363-1388, 1996.
doi:10.1163/156939396X00135 Google Scholar
23. Whites, K. and C. Chung, "Composite uniaxial bianisotropic chiral materials characterization: Comparison of predicted and measured scattering," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 3, 371-394, 1997.
doi:10.1163/156939397X00288 Google Scholar
24. Collin, R., "A simple artificial anisotropic dielectric medium," IEEE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 206-209, Apr. 1958.
doi:10.1109/TMTT.1958.1124539 Google Scholar
25. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IEEE Transactions on Antennas and Propagation, Vol. 9, No. 6, 563-566, Nov. 1961. Google Scholar
26. Fikioris, J. G., "Electromagnetic field inside a current-carrying region," Journal of Mathematical Physics, Vol. 6, No. 11, 1617-1620, 1965.
doi:10.1063/1.1704702 Google Scholar
27. Chen, K.-M., "A simple physical picture of tensor Green's function in source region," Proceedings of the IEEE, Vol. 65, No. 8, 1202-1204, Aug. 1977.
doi:10.1109/PROC.1977.10669 Google Scholar
28. Yaghjian, A., "Electric dyadic Green's functions in the source region," Proceedings of the IEEE, Vol. 68, No. 2, 248-263, Feb. 1980.
doi:10.1109/PROC.1980.11620 Google Scholar
29. Ball, J. and P. Khan, "Source region electric field derivation by a dyadic Green's function approach," IEE Proceedings H: Microwaves, Optics and Antennas, Vol. 127, No. 5, 301-304, Oct. 1980.
doi:10.1049/ip-h-1.1980.0063 Google Scholar
30. Bagby, J. and D. Nyquist, "Dyadic Green's functions for integrated electronic and optical circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 2, 207-210, Feb. 1987.
doi:10.1109/TMTT.1987.1133625 Google Scholar
31. Viola, M. and D. Nyquist, "An observation on the Sommerfeld-integral representation of the electric dyadic Green's function for layered media," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1289-1292, Aug. 1988.
doi:10.1109/22.3672 Google Scholar
32. Chew, W., "Some observations on the spatial and eigenfunction representations of dyadic Green's functions," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 10, 1322-1327, Oct. 1989.
doi:10.1109/8.43544 Google Scholar
33. Ali, S. M., T. M. Habashy, and J. A. Kong, "Spectral-domain dyadic Green's function in layered chiral media," Journal of the Optical Society of America A, Vol. 9, No. 3, 413-423, Mar. 1992.
doi:10.1364/JOSAA.9.000413 Google Scholar
34. Jakoby, B. and F. Olyslager, "Singularity in Green dyadics for uniaxial bianisotropic media," Electronics Letters, Vol. 31, No. 10, 779-781, May 1995.
doi:10.1049/el:19950544 Google Scholar
35. Weiglhofer, W. S., "Electromagnetic field in the source region: A review," Electromagnetics, Vol. 19, No. 6, 563-577, 1999.
doi:10.1080/02726349908908674 Google Scholar
36. Hildebrand, F. B., Advanced Calculus for Applications, 364-365, 2nd Edition, Prentice-Hall, 1976.
37. Silberstein, M., "Application of a generalized Leibniz rule for calculating electromagnetic fields within continuous source regions," Radio Science, Vol. 26, No. 1, 183-190, 1991.
doi:10.1029/89RS03057 Google Scholar