1. Kerr, J., "A new relation between electricity and light: Dielectri-fied media birefringent," Phil. Mag. J. Sci., Vol. 50, No. 3, 337-393, 1875. Google Scholar
2. Boyd, R. W., Nonlinear Optics, 2nd Edition, Academic Press, 2003.
3. Aberg, I., "High-frequency switching and Kerr effect - Nonlinear problems solved with nonstationary time domain techniques Summary," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 1, 85-90, 1998.
doi:10.1163/156939398X00061 Google Scholar
4. Joseph, R. M. and A. Taflove, "FDTD Maxwell's equations models for nonlinear electrodynamics and optics," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 364-374, 1997.
doi:10.1109/8.558652 Google Scholar
5. Kosmidou, E. P. and T. D. Tsiboukis, "An unconditionally stable ADI-FDTD algorithm for nonlinear materials," Proc. ISTET, 2003. Google Scholar
6. Fujii, M., M. Tahara, I. Sakagami, W. Freude, and P. Russer, "High-order FDTD and auxiliary differential equation formulation of optical pulse propagation ," IEEE J. Quantum Electron., Vol. 40, No. 2, 175-182, 2004.
doi:10.1109/JQE.2003.821881 Google Scholar
7. Balourdos, P. S., D. J. Frantzeskakis, M. C. Tsilis, and I. G. Tigelis, "Reflectivity of a nonlinear discontinuity in optical waveguides," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 1, 1-11, 1998. Google Scholar
8. Deering, W. D. and G. M. Molina, "Power switching in hybrid coherent couplers," IEEE J. Quantum Electron., Vol. 33, No. 3, 336-340, 1998.
doi:10.1109/3.556001 Google Scholar
9. Zhou, F., Y. Liu, Z.-Y. Li, and Y. Xia, "Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials," Opt. Express, Vol. 18, No. 15, 13337-13344, 2010.
doi:10.1364/OE.18.013337 Google Scholar
10. Wang, S. M. and L. Gao, "Nonlinear responses of the periodic structure composed of single negative materials," Opt. Commun., Vol. 267, No. 1, 197-204, 2006.
doi:10.1016/j.optcom.2006.05.065 Google Scholar
11. Wang, S. M., C. G. Tang, T. Pan, and L. Gao, "Bistability and gap soliton in one-dimensional photonic crystal containing single-negative materials," Phys. Lett. A, Vol. 348, No. 3-6, 424-431, 2006.
doi:10.1016/j.physleta.2005.08.037 Google Scholar
12. Hedge, R. S. and H. G. Winful, "Optical bistability in periodic nonlinear structures containing left handled materials," Microw. Opt. Technol. Lett., Vol. 46, No. 36, 528-530, 2005. Google Scholar
13. Gao, D. and L. Gao, "Goos-Hänchen shift of the reflection from nonlinear nanocomposites with electric field tunability," Appl. Phys. Lett., Vol. 97, 041903, 2010.
doi:10.1063/1.3470000 Google Scholar
14. Dong, L. Gao, and C.-W. Qiu, "Goos-Hänchen shift at the surface of chiral negative refractive media," Progress In Electromagnetic Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002 Google Scholar
15. Brzozowski, L. and E. H. Sargent, "Optical signal processing using nonlinear distributed feedback structures," IEEE J. Quantum Electron., Vol. 36, No. 5, 550-555, 2000.
doi:10.1109/3.842096 Google Scholar
16. Qasymeh, M., M. Cada, and S. A. Ponomarenko, "Quadratic electro-optic Kerr effect: Applications to photonic devices," IEEE J. Quantum Electron., Vol. 44, No. 8, 740-746, 2008.
doi:10.1109/JQE.2008.924430 Google Scholar
17. Wu, J.-W. and H.-B. Bao, "Simultaneous generation of ultrafast bright and dark pulse employing nonlinear processes based on the silicon waveguides," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1143-1154, 2009. Google Scholar
18. Li, Y. E. and X. P. Zhang, "Nonlinear optical switch utilizing long-range surface plasmon polaritons," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2363-2371, 2009. Google Scholar
19. Crutcher, S., A. Biswas, M. D. Aggarwal, and M. E. Edwards, "Oscillatory behavior of spatial solitons in two-dimensional waveguides and stationary temporal power law solitons in optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 761-772, 2006.
doi:10.1163/156939306776143361 Google Scholar
20. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear superimposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetic Research, Vol. 77, 243-266, 2007.
doi:10.2528/PIER07072903 Google Scholar
21. Morgan, S. A., R. J. Ballagh, and K. Burnett, "Solitary-wave solutions to nonlinear Schrödinger equations," Phys. Rev. A, Vol. 55, No. 6, 4338-4345, 1997.
doi:10.1103/PhysRevA.55.4338 Google Scholar
22. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966. Google Scholar
23. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-Difference Time-Domain Method," Artech House, Norwood, MA, 2004. Google Scholar
24. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetic Research, Vol. 116, 441-456, 2011. Google Scholar
25. Francés, J., C. Neipp, M. Pérez-Molina, and A. Beléndez, "Rigorous interference and diffraction analysis of diffractive optic elements using the finite-difference time-domain method," Comput. Phys. Commun., Vol. 181, No. 12, 1963-1973, 2010.
doi:10.1016/j.cpc.2010.09.005 Google Scholar
26. Francés, J., C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, "Analysis of reflection gratings by means of a matrix approach," Progress In Electromagnetic Research, Vol. 118, 167-183, 2011.
doi:10.2528/PIER11050403 Google Scholar
27. Kalaee, P. and J. Rashed-Mohassel, "Investigation of dipole radiation pattern above a chiral media using 3D BI-FDTD approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 75-86, 2009.
doi:10.1163/156939309787604706 Google Scholar
28. Kao, Y. C. and R. G. Atkins, "A finite-difference time-domain approach for frequency selective surfaces at oblique incidence," Proceedings of Antennas and Propagation Society International Symposium, 1432-1435, 1996. Google Scholar
29. Roden, J. A., S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementation," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 4, 420-427, 1998.
doi:10.1109/22.664143 Google Scholar
30. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique incidence case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 12, 1595-1607, 1993.
doi:10.1163/156939393X00020 Google Scholar
31. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetic Research, Vol. 128, 153-170, 2012. Google Scholar
32. Shahmansouri, A. and B. Rashidian, "Comprehensive three-dimensional split-field finite-difference time-domain method for analysis of periodic plasmonic nanostructures: Near- and far-field formulation," J. Opt. Soc. Am. B, Vol. 28, No. 11, 2690-2700, 2011.
doi:10.1364/JOSAB.28.002690 Google Scholar
33. Shahmansouri, A. and B. Rashidian, "GPU implementation of split-field finite-difference time-domain method for Drude-Lorentz dispersive media," Progress In Electromagnetic Research, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505 Google Scholar
34. Goorjian, P. M., A. Taflove, R. M. Joseph, and S. C. Hagness, "Computational modeling of femtosecond optical solitons from Maxwell's equations," IEEE J. Quantum Electron., Vol. 28, No. 10, 2416-2422, 1992.
doi:10.1109/3.159548 Google Scholar
35. Goorjian, P. M. and A. Taflove, "Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons," Opt. Lett., Vol. 17, No. 3, 180-182, 1992.
doi:10.1364/OL.17.000180 Google Scholar
36. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetic Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603 Google Scholar
37. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249 Google Scholar
38. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of Mur's absorbing boundaries with periodic structures to speed up the design process using finite-difference time-domain method," Progress In Electromagnetic Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIER05062103 Google Scholar
39. Oh, C. and M. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: An efficient FDTD implementation," Opt. Express, Vol. 14, No. 24, 11870-11884, 2006.
doi:10.1364/OE.14.011870 Google Scholar
40. Ammann, M., "Non-trivial materials in EM-FDTD," , Master's Thesis, Department of Physics, Swiss Federal Institute of Technology, 2007.
doi:10.1007/s11082-006-9020-1 Google Scholar
41. Pinto, D., S. S. A. Obayya, B. M. A. Rahman, and K. T. V. Grattan, "FDTD analysis of nonlinear Bragg grating based optical devices," Opt. Quant. Electron., Vol. 38, No. 15, 1217-1238, 2006. Google Scholar
42. Macleod, H. A., Thin-Film Optical Filters, 2nd Edition, Taylor & Francis, 2001.
doi: --- Either ISSN or Journal title must be supplied.