1. Ozbay, , E., , "Ozbay, E., Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, , No. 5758, 189-193, 2006.
doi:10.1126/science.1114849 Google Scholar
2. Liaw, , J.-W., C.-S. Chen, and J.-H. Chen, "Plasmonic effect of gold nanospheroid on spontaneous emission," Progress In Electromagnetic Research B, Vol. 31, 283-296, 2011. Google Scholar
3. Smajic, J., C. Hafner, L. Raguin, K. Tavzarashvili, and M. Mishrikey, "Comparison of numerical methods for the analysis of plasmonic structures," J. Comput. Theor. Nanos., Vol. 6, No. 3, 763-774, 2009..
doi:10.1166/jctn.2009.1107 Google Scholar
4. Taflove, , A., S. C. Hagness, and , Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House Publishers, 685 Canton Street, , 2005.
5. Lee, , K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications ," Progress In Electromagnetic Research, Vol. 116, 441-456, 2011. Google Scholar
6. Shahmansouri, , A. a and B. Rashidian, "GPU implementation of split-field definite-difference time-domain method for drude-lorentz dispersive media," Progress In Electromagnetic Research,, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505 Google Scholar
7. Etchegoin, , P. G., E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys., Vol. 125, No. 16, 164705-3, 2006.
doi:10.1063/1.2360270 Google Scholar
8. Young, , J. L., R. O. Nelson, and , "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag., Vol. 43, No. 1, 61-126, 2001.
doi:10.1109/74.920019 Google Scholar
9. Etchegoin, , P. G., E. C. Le Ru, and M. Meyer, , "Erratum: `An analytic model for the optical properties of gold' ," [J. Chem. Phys., 125, 164705, 2006], Vol. 127, No. 18, 189901-1, 2007. Google Scholar
10. Vial, , A., T. Laroche, and , "Comparison of gold and silver dispersion laws suitable for FDTD simulations," Appl. Phys. B, Vol. 93, No. 1, 139-143, , 2008.
doi:10.1007/s00340-008-3202-4 Google Scholar
11. Kelley, , D. F., R. J. Luebbers, and , "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propag., Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882 Google Scholar
12. Luebbers, , R., D. Steich, and K. Kunz, , "FDTD calculation of scattering from frequency-dependent materials," IEEE Trans. on Antennas and Propag., Vol. 41, No. 9, 1249-1257, 1993..
doi:10.1109/8.247751 Google Scholar
13. Vial, A., , "Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the ¯nite-di®erence time domain method," J. Opt. A: Pure Appl. Opt., Vol. 9, No. 7, 745-748, 2007..
doi:10.1088/1464-4258/9/7/029 Google Scholar
14. Sullivan, , D. M., , Electromagnetic Simulation Using the FDTD Method, IEEE Press, , 2000..
doi:10.1109/9780470544518
15. Weedon, , W. H., C. M. Rappaport, and , "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media," IEEE Trans. on Antennas and Propag., Vol. 45, No. 3, 401-410, , 1997..
doi:10.1109/8.558655 Google Scholar
16. Joseph, , R. M., S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Opt. Lett., Vol. 16, No. 18, 412-1414, 1991.
doi:10.1364/OL.16.001412 Google Scholar
17. Okoniewski, , M., M. Mrozowski, and M. A. Stuchly, , "Simple treatment of multi-term dispersion in FDTD," IEEE Microw. Guided Wave Lett., Vol. 7, No. 5, Vol. 7, No. 5, 121-123, 1997..
doi:10.1109/75.569723 Google Scholar
18. Vial, , A., T. Laroche, and , "Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method," J. Phys. D: Appl. Phys., Vol. 40, , No. 22, 7152-7158, 2007..
doi:10.1088/0022-3727/40/22/043 Google Scholar
19. Okoniewski, , M., E. Okoniewska, and , "Drude dispersion in ADE FDTD revisited," Electron. Lett., Vol. 504, No. 9, 503-504, 2006..
doi:10.1049/el:20060328 Google Scholar
20. Hulse, C., A. Knoesen, and , "Dispersive models for the ¯nite-di®erence time-domain method: Design, analysis, and implementation," J. Opt. Soc. Am. A,, Vol. 11, No. 6, 1802-1811, 1994.
doi:10.1364/JOSAA.11.001802 Google Scholar
21. Lin, , Z., L. Thyln, and , "On the accuracy and stability of several widely used FDTD approaches for modeling lorentz dielectrics," IEEE Trans. on Antennas and Propag., Vol. 57, No. 10, 3378-3381, 2009..
doi:10.1109/TAP.2009.2029383 Google Scholar
22. Pereda, , A., L. A. Vielva, A. Vegas, and A. Prieto, "Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 2, 377-381, 2001..
doi:10.1109/22.903100 Google Scholar
23. Johnson, , P. B., R. W. Christy, and , "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370, , 1972. .
doi:10.1103/PhysRevB.6.4370 Google Scholar
24. Born, , M., E. Wolf, and , Principles of Optics: Electromagnetic Theory of Propagation,, 7th Ed., Interference and Diffraction of Light Cambridge University Press, 1999..