Vol. 135
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-26
Filter Tuning Based on Linear Decomposition of Scattering Characteristics
By
Progress In Electromagnetics Research, Vol. 135, 451-464, 2013
Abstract
This paper proposes a microwave filter post-production tuning based on an optimization process which finds the vector of deviations of tuning elements that should be applied to tune the filter. To build the system, the coarse set of scattering parameters is collected in such a way that every tuning element is detuned while other elements remain in their proper positions. In the concept, it is assumed that the relation between the positions of tuning elements and filter scattering characteristics can be modelled by the sum of one argument polynomial functions. Each polynomial function depends on the value of only one tuning element. Therefore, the measured filter characteristics can be linearly decomposed to characteristics from the collected coarse set and corresponding tuning element deviations can be found. This is done by way of optimization process. The presented numerical and physical experiments on the 7th order cross-coupled, bandpass filter have verified our approach.
Citation
Tomasz Kacmajor, and Jerzy Julian Michalski, "Filter Tuning Based on Linear Decomposition of Scattering Characteristics," Progress In Electromagnetics Research, Vol. 135, 451-464, 2013.
doi:10.2528/PIER12112603
References

1. Dunsmore, , J., "Tuning band pass filters in the time domain,"," IEEE MTT-S Int. Microwave Symp. Digest, 1351-1354, 1999.

2. Thal, , H. L., , "Computer-aided filter alignment and diagnosis," IEEE Trans. on Microwave Theory and Tech., Vol. 26, No. 12, 958-963, Dec. 1978..
doi:10.1109/TMTT.1978.1129528

3. Miraftab, , V., R. R. Mansour, and , "Computer-aided tuning of microwave filters using fuzzy logic," IEEE Trans. on Microwave Theory and Tech., Vol. 50, 2781-2788, Dec. 2002.
doi:10.1109/TMTT.2002.805291

4. Michalski, , J. J., "Artificial neural networks approach in microwave filter tuning," Progress In Electromagnetics Research M, Vol. 13, 173-188, 2010.
doi:10.2528/PIERM10053105

5. Michalski, , J. J., "Inverse modeling in application for sequential filter tuning," Progress In Electromagnetics Research,, Vol. 115, 113-129, 2011.

6. Kacmajor, T., J. J. Michalski, and , "Neuro-fuzzy approach in microwave filter tuning," IEEE MTT-S Int. Microwave Symp. Digest, , 1-4, 2011.

7. Michalski, J. J., "On linear mapping of filter characteristic to position of tuning elements in filter tuning algorithm," Progress In Electromagnetics Research, Vol. 123, 279-298, 2012.
doi:10.2528/PIER11101009

8. Kacmajor, T. and J. J. Michalski, "Approximation of filter characteristic to tuning element positions using coarse set," Proc. 19th Int. Conf. Microwave, Radar and Wireless Communications, Vol. 2, 684-687, 2012..

9. Atia, , A. E., A. E. Williams, and R. Newcomb, "Narrow-band multiple-coupled cavity synthesis," IEEE Trans. on Circuits Syst.,, Vol. 21, No. 5, 649-655, Sep. 1974.
doi:10.1109/TCS.1974.1083913

10. Atia, , A. E., A. E. Williams, and , "Narrow-bandpass waveguide filters," IEEE Trans. on Microwave Theory and Tech., Vol. 20, No. 4, 258-265, 1972. 1972.
doi:10.1109/TMTT.1972.1127732

11. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, J. Wiley & Sons, , 2007..

12. Wang, R., J. Xu, C. L. Wei, M.-Y. Wang, and X.-C. Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011..

13. Wang, , R., J. Xu, and , "Extracting coupling matrix and unloaded Q from scattering parameters of lossy filters," Progress In Electromagnetics Research, Vol. 115, 303-315, 2011..

14. Xiao, , K., L. F. Ye, F. Zhao, S.-L. Chai, and J. L.-W. Li, "Coupling matrix decomposition in designs and applications of microwave filters," Progress In Electromagnetics Research, Vol. 117, 409-423, 2011.

15. Gulgowski, , J., J. J. Michalski, and , "The analytic extraction of the complex-valued coupling matrix and its application in the microwave filter modelling," Progress In Electromagnetics Research, Vol. 130, 131-151, 2012.

16. Corrales, , E., Corrales, E., P. de Paco, and O. Menendez, Direct coupling ma-, "Direct coupling matrix synthesis of band-stop filters," Progress In Electromagnetics Research Letters, Vol. 27, 85-91, 2011.
doi:10.2528/PIERL11091512

17. Michalski, , J. J., J. Gulgowski, T. Kacmajor, and M. Piatek, "Coupling matrix synthesis by optimization with cost function Coupling matrix synthesis by optimization with cost function," PIERS Proceedings,, 1351-1354, , Aug. 2012.

18. Cameron, , R. J., , "Cameron, R. J., Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. on Microwave Theory and Tech., Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

19. Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead simplex method in low dimensions," SIAM Journal of Optimization, Vol. 9, No. 1, 112-147, 1998.
doi:10.1137/S1052623496303470