Vol. 135
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-24
A Novel Slotted Helix Slow-Wave Structure for Millimeter-Wave Traveling-Wave Tube
By
Progress In Electromagnetics Research, Vol. 135, 347-362, 2013
Abstract
A novel slotted helix slow-wave structure (SWS) is proposed to develop high power, wide-bandwidth, high reliability millimeter-wave traveling-wave tube (TWT). This structure, which can improve the heat dissipation capability of the helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix. In this paper, thermal stress analysis, the electromagnetic characteristics and the beam-wave interaction of this structure are investigated. The conclusions of this paper will be a great help for the design of millimeter-wave traveling-wave tube.
Citation
Lu-Wei Liu, Yan-Yu Wei, Jin Xu, Zhi-Gang Lu, Hai-Rong Yin, Ling-Na Yue, Hua-Rong Gong, Guoqing Zhao, Zhaoyun Duan, Wen-Xiang Wang, and Yu-Bin Gong, "A Novel Slotted Helix Slow-Wave Structure for Millimeter-Wave Traveling-Wave Tube," Progress In Electromagnetics Research, Vol. 135, 347-362, 2013.
doi:10.2528/PIER12112611
References

1. Safier, , P. N., V. Dronov, T. M. Antonsen, J. X. Qiu, B. G. Danly, and B. Levush, "From frequency-domain physics-based simulation to time-domain modeling of traveling-wave tube ampliers for high data-rate communication applications ," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3605-3615, Oct. 2006.
doi:10.1109/TMTT.2006.882885        Google Scholar

2. Qiu, , J. X., B. Levush, J. Pasour, A. Katz, C. M. Armstrong, D. R. Whaley, J. Tucek, K. Kreischer, and D. Gallagher, "Vacuum tube amplifiers," IEEE Microw. Mag., Vol. 10, No. 7, 38-51, Dec. 2009.
doi:10.1109/MMM.2009.934517        Google Scholar

3. Komm, , D. S., R. T. Benton, H. C. Limburg, W. L. Menninger, and X. L. Zhai, "Advances in space TWT e±ciencies," IEEE Trans. Electron Devices, Vol. 48, No. 1, 174-176, Jan. 2001.
doi:10.1109/16.892186        Google Scholar

4. Kesari, V., J. P. Keshari, and , "Analysis of a circular waveguide loaded with dielectric and metal discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
doi:10.2528/PIER10110207        Google Scholar

5. Li, , Z., J. H. Wang, F. Li, Z. Zhang, and M. E. Chen, , "A new insight into the radiation mechanism of fast and slow traveling waves," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1874-1885, , 2011.
doi:10.1163/156939311797454006        Google Scholar

6. Liu, Y., J. Xu, Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W. Wang, Y. Gong, and J. Feng, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906        Google Scholar

7. Shen, , F., Y.-Y. Wei, X. Xu, Y. Liu, H.-R. Yin, Y.-B. Gong, and W.-X. Wang, "140-GHz V-shaped microstrip meander-line traveling-wave tube," Journal of Electromagnetic Waves and Applications, Vol. 26, , No. 1, 89-98, 2012.
doi:10.1163/156939312798954946        Google Scholar

8. Hou, , Y., J. Xu, H.-R. Yin, Y.-Y. Wei, L.-N. Yue, G.-Q. Zhao, and Y.-B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes, ," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012.        Google Scholar

9. Han, , Y., Y. W. Liu, Y. G. Ding, and P. K. Liu, Study on the, " Study on the thermal interface resistance of the helix slow-wave structure," Acta Physica Sinica, Vol. 58, No. 3, 1806-1811, Mar. 2009.        Google Scholar

10. Fleury, , G., C. Deville, and J. C. Kuntzmann, "Average power limits of brazed-helix TWT's," 1980 International Electron Devices Meeting Technical Digest, Vol. 26, 806-809, 1980..
doi:10.1109/IEDM.1980.189961        Google Scholar

11. Yao, L. M., Z. H. Yang, Z. S. Huo, X. F. Zhu, and B. Lin, "Simulation of thermal characteristics for helical slow-wave circuit of TWT," International Conference on Microwave and Millimeter International Conference on Microwave and Millimeter , 1-3, 2007..        Google Scholar

12. Yan, S. M., L. M. Yao, and Z. H. Yang, "Effect of thermal strain in helical slow-wave circuit on TWT cold-test characteristics," IEEE Trans. Electron Devices, Vol. 55, No. 8, 2278-2281 , Aug. 2008.
doi:10.1109/TED.2008.926725        Google Scholar

13. Xie, K. J., , "CAD Diamond rod and its application in the high power TWT," The 25th Infrared and Millimeter Wave Conference,, 343-344, 2000.        Google Scholar

14. Dayton, , J. A., G. T. Mearini, H. Chen, and C. L. Kory, "Diamonded-studded helical traveling wave tube," IEEE Trans. Electron Devices, Vol. 52, No. 5, 695 -701, May 2005..
doi:10.1109/TED.2005.845863        Google Scholar

15. Fleury, , G., J. C. Kuntzmann, and P. Lafuma, "High-power brazed-helix telecommunications TWT's," International Electron Devices Meeting Technical Digest, Vol. 23, 116-119, 1977.        Google Scholar

16. Henry, , D., N. Sntonja, and S. Wartski, "Brazed-helix technology for 30 GHz power TWTs," International Electron Devices Meeting Technical Digest,, 505-507, 1986.        Google Scholar

17. Wartski, S., D. Henry, and N. Santonjia, , "Development of a brazed-helix TWT for future Ka-band earth stations delivering 200W in the band 27.5--30 GHz," 1988 International Electron Devices Meeting Technical Digest, 366-369, 1988.
doi:10.1109/IEDM.1988.32832        Google Scholar

18. Gong, , Y., Y. Wei, W. Wang, and Z. Duan, "Analysis of a novel brazed helix tape slow wave structure with high power capability," 30th IEEE International Conference on Plasma Science,, 177, 2003.        Google Scholar

19. Lee, J. S. and C. Everleigh, "High power CW BeO block brazed copper helix TWT," Proc. IEEE International Vacuum Electronics Conference, 185-186, 2006..        Google Scholar

20. Toups, , C. E., D. K. Yamadam, and , "Thermal/structural analysis of diamond supported helices," AIAA 11th Communication Satellite Systems Conference, 605-608, 1986.        Google Scholar

21. Han, , Y., Y. W. Liu, Y. G. Ding, and P. K. Liu, , "Improvement of heat dissipation capability of slow-wave structure using two assembling methods," IEEE Electron Devices Letters, Vol. 29, No. 8, 955-956, , Aug. 2008.
doi:10.1109/LED.2008.2001350        Google Scholar

22. TaKahashi, , M., T. Yamaguchi, H. Hashimoto, T. Konishi, and H. Sato, "Non-brazed helix TWT attained 3kW output at C-band and 600Wat Ku-band," 1986 International Electron Devices Meeting Technical Digest, 167-170, 1986.
doi:10.1109/IEDM.1986.191140        Google Scholar

23. Wei, , Y. Y., L. W. Liu, Y. B. Gong, X. Xu, H. R. Yin, L. N. Yue, Y. Liu, J. Xu, and W. X. Wang, "Helical slow-wave structure," USA Patent Application, No. 13/345, 121, , Jan. 6 2012..        Google Scholar

24. Liu, , L., Y. Wei, X. Xu, F. Shen, G. Zhao, M. Huang, T. Tang, W. X. Wang, and Y. Gong, "A novel helical slow-wave structure for millimeter wave traveling wave tube," 5th Global Symposium on Millimeter Waves Conference, 312-315, 2012.        Google Scholar

25. ANSYS, Inc., "Analysis guide," Release 14.0, 2012..        Google Scholar

26. Ansoft Corp., "Ansoft HFSS user's reference,".
doi:http://www.ansoft.com.cn/.        Google Scholar

27. CST Corp., "CST PS tutorials," http://www.cst-china.cn/.        Google Scholar

28. Lucken, J. A., "Some aspects of circuits power dissipation in high power CW helix traveling-wave tubes, Part I: General theory," IEEE Trans. Electron Devices, Vol. 16, No. 9, 813-820, Sep. 1969.
doi:10.1109/T-ED.1969.16858        Google Scholar

29. Crivello, , R., R. W. Grow, and , "Thermal analysis of PPM-focused rod-supported TWT helix structures," IEEE Trans. Electron Devices, Vol. 35, No. 10, 1701-1720, , Oct. 1988..
doi:10.1109/16.7377        Google Scholar

30. Sauseng, , O., A. E. Mauoly, and A. Hall, "Thermal properties and power capability of helix structures for millimeter waves," International Electron Devices Meeting Technical Digest,, Vol. 124, 534-537, 1978.        Google Scholar

31. Han, Y., Y. Liu, Y. Ding, and P. Liu, "An evaluation of heat dissipation capability of slow-wave structures," IEEE Trans. Electron Devices, Vol. 54, No. 6, 1562-1565, Jun. 2007.
doi:10.1109/TED.2007.895863        Google Scholar

32. Han, Y., Y. Liu, Y. Ding, P. Liu, and C. Lu, "Thermal analysis of a helix TWT slow-wave structure," IEEE Trans. Electron Devices, Vol. 55, No. 5, 1269-1272, , May 2008..
doi:10.1109/TED.2008.919536        Google Scholar

33. Bartos, , K. F., E. B. Fite, K. A. Shalkhauser, and G. R. Sharp, "A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes," NASA Technical Paper 3081, 1-14, 1991.        Google Scholar

34. Rocci, , P. J., , "Thermal-structural reliability assessment of helix TWT interaction circuit using finite element analysis," Proc. Aerosp. Electron. Conf., 731-737, , 1993.        Google Scholar

35. Zhao, , X. Q., G. X. Zhang, and X. H. Sun, , "The analysis and ANSYS simulation for the thermal condition of pulse helix TWT," Acta Electronica Sinica, Vol. 32, No. 6, 1029-1032, 2004.        Google Scholar

36. Han, Y., Y. Liu, Y. Ding, and P. Liu, , "Reliability analysis of thermal conduction of slow-wave structures assembled with different methods," IEEE Trans. Electron Devices, Vol. 9, No. 2, 265-268, May 2009..        Google Scholar

37. Harper, , R., M. P. Puri, and , "Heat transfer and power capabilities of EFH helix TWT's," International Electron Devices Meeting Technical Digest, 498-500, 1986 .        Google Scholar

38. Chong, , C. K., J. A. Davis, R. H. Le Borgne, M. L. Ramay, R. J. Stolz, R. N. Tamashiro, J. P. Vaszari, and X. Zhai, "Development of high-power Ka-band and Q-band helix-TWTs," IEEE Trans. Electron Devices, Vol. 52, , No. 5, 653-659, May 2005.
doi:10.1109/TED.2005.845842        Google Scholar

39. Booske, , J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter wave traveling wave tubes," IEEE Trans. Electron Devices, Vol. 52, No. 5, 685-694, May 2005.
doi:10.1109/TED.2005.845798        Google Scholar

40. Antonsen, Jr., T. M., P. Safier, D. P. Chernin, and B. Levush, "Stability of traveling-wave ampli¯ers with re°ections," IEEE Trans. on Plasma Science, Vol. 30, No. 3, 1089-1107, Jun. 2002..
doi:10.1109/TPS.2002.801563        Google Scholar

41. Chernin, D., D., T. M. Antonsen, Jr., and B. Levush, "Power holes' and nonlinear forward and backward wave gain competition in helix traveling-wave tubes," IEEE Trans. Electron Devices, Vol. 50, No. 12, 2540-2547, Dec. 2003..
doi:10.1109/TED.2003.819252        Google Scholar