National Key Laboratory of Science and Technology on Vacuum Electronics
University of Electronic Science and Technology of China
China
HomepageSchool of Physical Electronics
University of Electronic Science and Technology of China
China
HomepageCollege of Physical Electronics
University of Electronic Science and Technology of China
China
HomepageNational Key Laboratory of Science and Technology on Vacuum Electronics
University of Electronic Science and Technology of China
China
HomepageSchool of Physical Electronics
University of Electronic Science and Technology of China
China
HomepageCollege of Physical Electronics
University of Electronic Science and Technology of China
China
HomepageSchool of Physical Electronics
University of Electronic Science and Technology of China
China
HomepageNational Key Laboratory of Science and Technology on Vacuum Electronics
University of Electronic Science and Technology of China
China
HomepageSchool of Physical Electronics
University of Electronic Science and Technology of China
China
HomepageSchool of Physical Electronics
University of Electronic Science and Technology of China
China
HomepageSchool of Physical Electronics
University of Electronic Science and Technology of China
China
Homepage1. Safier, , P. N., V. Dronov, T. M. Antonsen, J. X. Qiu, B. G. Danly, and B. Levush, "From frequency-domain physics-based simulation to time-domain modeling of traveling-wave tube ampliers for high data-rate communication applications ," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3605-3615, Oct. 2006.
doi:10.1109/TMTT.2006.882885 Google Scholar
2. Qiu, , J. X., B. Levush, J. Pasour, A. Katz, C. M. Armstrong, D. R. Whaley, J. Tucek, K. Kreischer, and D. Gallagher, "Vacuum tube amplifiers," IEEE Microw. Mag., Vol. 10, No. 7, 38-51, Dec. 2009.
doi:10.1109/MMM.2009.934517 Google Scholar
3. Komm, , D. S., R. T. Benton, H. C. Limburg, W. L. Menninger, and X. L. Zhai, "Advances in space TWT e±ciencies," IEEE Trans. Electron Devices, Vol. 48, No. 1, 174-176, Jan. 2001.
doi:10.1109/16.892186 Google Scholar
4. Kesari, V., J. P. Keshari, and , "Analysis of a circular waveguide loaded with dielectric and metal discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
doi:10.2528/PIER10110207 Google Scholar
5. Li, , Z., J. H. Wang, F. Li, Z. Zhang, and M. E. Chen, , "A new insight into the radiation mechanism of fast and slow traveling waves," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1874-1885, , 2011.
doi:10.1163/156939311797454006 Google Scholar
6. Liu, Y., J. Xu, Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W. Wang, Y. Gong, and J. Feng, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906 Google Scholar
7. Shen, , F., Y.-Y. Wei, X. Xu, Y. Liu, H.-R. Yin, Y.-B. Gong, and W.-X. Wang, "140-GHz V-shaped microstrip meander-line traveling-wave tube," Journal of Electromagnetic Waves and Applications, Vol. 26, , No. 1, 89-98, 2012.
doi:10.1163/156939312798954946 Google Scholar
8. Hou, , Y., J. Xu, H.-R. Yin, Y.-Y. Wei, L.-N. Yue, G.-Q. Zhao, and Y.-B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes, ," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012. Google Scholar
9. Han, , Y., Y. W. Liu, Y. G. Ding, and P. K. Liu, Study on the, " Study on the thermal interface resistance of the helix slow-wave structure," Acta Physica Sinica, Vol. 58, No. 3, 1806-1811, Mar. 2009. Google Scholar
10. Fleury, , G., C. Deville, and J. C. Kuntzmann, "Average power limits of brazed-helix TWT's," 1980 International Electron Devices Meeting Technical Digest, Vol. 26, 806-809, 1980..
doi:10.1109/IEDM.1980.189961 Google Scholar
11. Yao, L. M., Z. H. Yang, Z. S. Huo, X. F. Zhu, and B. Lin, "Simulation of thermal characteristics for helical slow-wave circuit of TWT," International Conference on Microwave and Millimeter International Conference on Microwave and Millimeter , 1-3, 2007.. Google Scholar
12. Yan, S. M., L. M. Yao, and Z. H. Yang, "Effect of thermal strain in helical slow-wave circuit on TWT cold-test characteristics," IEEE Trans. Electron Devices, Vol. 55, No. 8, 2278-2281 , Aug. 2008.
doi:10.1109/TED.2008.926725 Google Scholar
13. Xie, K. J., , "CAD Diamond rod and its application in the high power TWT," The 25th Infrared and Millimeter Wave Conference,, 343-344, 2000. Google Scholar
14. Dayton, , J. A., G. T. Mearini, H. Chen, and C. L. Kory, "Diamonded-studded helical traveling wave tube," IEEE Trans. Electron Devices, Vol. 52, No. 5, 695 -701, May 2005..
doi:10.1109/TED.2005.845863 Google Scholar
15. Fleury, , G., J. C. Kuntzmann, and P. Lafuma, "High-power brazed-helix telecommunications TWT's," International Electron Devices Meeting Technical Digest, Vol. 23, 116-119, 1977. Google Scholar
16. Henry, , D., N. Sntonja, and S. Wartski, "Brazed-helix technology for 30 GHz power TWTs," International Electron Devices Meeting Technical Digest,, 505-507, 1986. Google Scholar
17. Wartski, S., D. Henry, and N. Santonjia, , "Development of a brazed-helix TWT for future Ka-band earth stations delivering 200W in the band 27.5--30 GHz," 1988 International Electron Devices Meeting Technical Digest, 366-369, 1988.
doi:10.1109/IEDM.1988.32832 Google Scholar
18. Gong, , Y., Y. Wei, W. Wang, and Z. Duan, "Analysis of a novel brazed helix tape slow wave structure with high power capability," 30th IEEE International Conference on Plasma Science,, 177, 2003. Google Scholar
19. Lee, J. S. and C. Everleigh, "High power CW BeO block brazed copper helix TWT," Proc. IEEE International Vacuum Electronics Conference, 185-186, 2006.. Google Scholar
20. Toups, , C. E., D. K. Yamadam, and , "Thermal/structural analysis of diamond supported helices," AIAA 11th Communication Satellite Systems Conference, 605-608, 1986. Google Scholar
21. Han, , Y., Y. W. Liu, Y. G. Ding, and P. K. Liu, , "Improvement of heat dissipation capability of slow-wave structure using two assembling methods," IEEE Electron Devices Letters, Vol. 29, No. 8, 955-956, , Aug. 2008.
doi:10.1109/LED.2008.2001350 Google Scholar
22. TaKahashi, , M., T. Yamaguchi, H. Hashimoto, T. Konishi, and H. Sato, "Non-brazed helix TWT attained 3kW output at C-band and 600Wat Ku-band," 1986 International Electron Devices Meeting Technical Digest, 167-170, 1986.
doi:10.1109/IEDM.1986.191140 Google Scholar
23. Wei, , Y. Y., L. W. Liu, Y. B. Gong, X. Xu, H. R. Yin, L. N. Yue, Y. Liu, J. Xu, and W. X. Wang, "Helical slow-wave structure," USA Patent Application, No. 13/345, 121, , Jan. 6 2012.. Google Scholar
24. Liu, , L., Y. Wei, X. Xu, F. Shen, G. Zhao, M. Huang, T. Tang, W. X. Wang, and Y. Gong, "A novel helical slow-wave structure for millimeter wave traveling wave tube," 5th Global Symposium on Millimeter Waves Conference, 312-315, 2012. Google Scholar
25. ANSYS, Inc., "Analysis guide," Release 14.0, 2012.. Google Scholar
26. Ansoft Corp., "Ansoft HFSS user's reference,".
doi:http://www.ansoft.com.cn/. Google Scholar
27. CST Corp., "CST PS tutorials," http://www.cst-china.cn/. Google Scholar
28. Lucken, J. A., "Some aspects of circuits power dissipation in high power CW helix traveling-wave tubes, Part I: General theory," IEEE Trans. Electron Devices, Vol. 16, No. 9, 813-820, Sep. 1969.
doi:10.1109/T-ED.1969.16858 Google Scholar
29. Crivello, , R., R. W. Grow, and , "Thermal analysis of PPM-focused rod-supported TWT helix structures," IEEE Trans. Electron Devices, Vol. 35, No. 10, 1701-1720, , Oct. 1988..
doi:10.1109/16.7377 Google Scholar
30. Sauseng, , O., A. E. Mauoly, and A. Hall, "Thermal properties and power capability of helix structures for millimeter waves," International Electron Devices Meeting Technical Digest,, Vol. 124, 534-537, 1978. Google Scholar
31. Han, Y., Y. Liu, Y. Ding, and P. Liu, "An evaluation of heat dissipation capability of slow-wave structures," IEEE Trans. Electron Devices, Vol. 54, No. 6, 1562-1565, Jun. 2007.
doi:10.1109/TED.2007.895863 Google Scholar
32. Han, Y., Y. Liu, Y. Ding, P. Liu, and C. Lu, "Thermal analysis of a helix TWT slow-wave structure," IEEE Trans. Electron Devices, Vol. 55, No. 5, 1269-1272, , May 2008..
doi:10.1109/TED.2008.919536 Google Scholar
33. Bartos, , K. F., E. B. Fite, K. A. Shalkhauser, and G. R. Sharp, "A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes," NASA Technical Paper 3081, 1-14, 1991. Google Scholar
34. Rocci, , P. J., , "Thermal-structural reliability assessment of helix TWT interaction circuit using finite element analysis," Proc. Aerosp. Electron. Conf., 731-737, , 1993. Google Scholar
35. Zhao, , X. Q., G. X. Zhang, and X. H. Sun, , "The analysis and ANSYS simulation for the thermal condition of pulse helix TWT," Acta Electronica Sinica, Vol. 32, No. 6, 1029-1032, 2004. Google Scholar
36. Han, Y., Y. Liu, Y. Ding, and P. Liu, , "Reliability analysis of thermal conduction of slow-wave structures assembled with different methods," IEEE Trans. Electron Devices, Vol. 9, No. 2, 265-268, May 2009.. Google Scholar
37. Harper, , R., M. P. Puri, and , "Heat transfer and power capabilities of EFH helix TWT's," International Electron Devices Meeting Technical Digest, 498-500, 1986 . Google Scholar
38. Chong, , C. K., J. A. Davis, R. H. Le Borgne, M. L. Ramay, R. J. Stolz, R. N. Tamashiro, J. P. Vaszari, and X. Zhai, "Development of high-power Ka-band and Q-band helix-TWTs," IEEE Trans. Electron Devices, Vol. 52, , No. 5, 653-659, May 2005.
doi:10.1109/TED.2005.845842 Google Scholar
39. Booske, , J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter wave traveling wave tubes," IEEE Trans. Electron Devices, Vol. 52, No. 5, 685-694, May 2005.
doi:10.1109/TED.2005.845798 Google Scholar
40. Antonsen, Jr., T. M., P. Safier, D. P. Chernin, and B. Levush, "Stability of traveling-wave ampli¯ers with re°ections," IEEE Trans. on Plasma Science, Vol. 30, No. 3, 1089-1107, Jun. 2002..
doi:10.1109/TPS.2002.801563 Google Scholar
41. Chernin, D., D., T. M. Antonsen, Jr., and B. Levush, "Power holes' and nonlinear forward and backward wave gain competition in helix traveling-wave tubes," IEEE Trans. Electron Devices, Vol. 50, No. 12, 2540-2547, Dec. 2003..
doi:10.1109/TED.2003.819252 Google Scholar