Vol. 137
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-22
A Novel Sparse Stepped Chaotic Signal and Its Compression Based on Compressive Sensing
By
Progress In Electromagnetics Research, Vol. 137, 335-357, 2013
Abstract
We propose a novel signal model by combining the sparse stepped frequency signals with chaotic signals, i.e. the sparse stepped chaotic signal (SSCS) model, as well as the corresponding compression algorithm based on compressed sensing. In SSCS, the chaotic signals are modulated to sparse stepped frequencies to compose a transmitting burst. When receiving, the echo signals are demodulated to the baseband and then can be sampled directly at a rate much lower than the Nyquist rate determined by the bandwidth of chaotic signal of each subpulse. Compared with radars using conventional stepped frequency waveforms, the SSCS radar can transmit fewer subpulses in a burst and directly use lower speed ADC next to the receiver. Both simulated and real radar data are processed to demonstrate the effectiveness of the proposed SSCS as well as the compression algorithm by which high resolution range profiles are very well reconstructed.
Citation
Jiefang Yang Yunhua Zhang , "A Novel Sparse Stepped Chaotic Signal and Its Compression Based on Compressive Sensing," Progress In Electromagnetics Research, Vol. 137, 335-357, 2013.
doi:10.2528/PIER12120106
http://www.jpier.org/PIER/pier.php?paper=12120106
References

1. Levanon, N., "Stepped-frequency pulse-train radar signal," IEE Proc-Radar Sonar Navigation, Vol. 149, No. 6, 297-309, 2002.
doi:10.1049/ip-rsn:20020432

2. Levanon, N. and E. Mozeson, "Nullifying ACF grating lobes in stepped-frequency train of LFM pulses," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 2, 694-703, 2003.
doi:10.1109/TAES.2003.1207275

3. Zhang, Q. and Y.-Q. Jin, "Aspects of radar imaging using frequency-stepped chirp signals," Eurasip Journal on Applied Signal Processing, Vol. 2006, No. 13, 1-8, 2006.

4. Zhang, Y. H., H. B. Li, and J. Wu, "Subaperture processing method for stepped frequency chirp signal," Aerospace Electronics Information Engineering and Control, Vol. 28, No. 1, 1-6, 2006.

5. Liu, G. S., H. Gu, X. H. Zhu, and W. M. Su, "The present and the uture of random signal radars," IEEE Aerospace and Electronic Systems Magazine, Vol. 12, No. 10, 35-40, 1997.
doi:10.1109/62.624326

6. Lukin, K. A. and R. M. Narayanan, "Fifty years of noise radar," Seventh International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 1-3, 2010.
doi:10.1109/MSMW.2010.5546159

7. Narayanan, R. M., Y. Xu, P. D. Hoffmeyer, and J. O. Curtis, "Design, performance, and applications of a coherent ultra-wideband random noise radar," Optical Engineering, Vol. 37, No. 6, 1855-1869, 1998.
doi:10.1117/1.601699

8. Narayanan, R. M., "Through-wall radar imaging using uwb noise waveforms," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 345, No. 6, 659-678, 2008.
doi:10.1016/j.jfranklin.2008.03.004

9. Ashtari, A., et al., "Radar signal design using chaotic signals," 2007 International Waveform Diversity & Design Conference, 353-357, 2007.
doi:10.1109/WDDC.2007.4339442

10. Ding, K. and R. Yang, "Point target imaging simulation using chaotic signals," 2005 IEEE International Radar Conference Record, 847-850, 2005.
doi:10.1109/RADAR.2005.1435945

11. Flores, B. C., E. A. Solis, and G. Thomas, "Assessment of chaos-based FM signals for range-doppler imaging," IEE Proceedings - Radar Sonar and Navigation, Vol. 150, No. 4, 313-322, 2003.
doi:10.1049/ip-rsn:20030728

12. Wang, H. and J. D. Hu, "The improved logistic-map chaotic spread spectrum sequences," Journal of China Institute of Communications, Vol. 18, No. 8, 71-77, 1997.

13. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

14. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

15. Candes, E. J. and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE Transactions on Information Theory, Vol. 52, No. 12, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507

16. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

17. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," 2007 IEEE Radar Conference, 128-133, 2007.
doi:10.1109/RADAR.2007.374203

18. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277

19. Ender, J. H. G., "On compressive sensing applied to radar," Signal Processing, Vol. 90, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009

20. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

21. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

22. Zhang, L., Z. J. Qiao, and M. D. Xing, "High-resolution ISAR imaging with sparse stepped-frequency waveforms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 11, 4630-4651, 2011.
doi:10.1109/TGRS.2011.2151865

23. Zhu, F., Q. Zhang, Q. Lei, and Y. Luo, "Reconstruction of moving target's HRRP using sparse frequency-stepped chirp signal," IEEE Sensors Journal, Vol. 11, No. 10, 2327-2334, 2011.
doi:10.1109/JSEN.2011.2136375

24. Yu, L. J. and Y. H. Zhang, "Random step frequency CSAR imaging based on compressive sensing," Progress In Electromagnetics Research C, Vol. 32, 81-94, 2012.

25. Zhang, L., et al., "High-resolution ISAR imaging by exploiting sparse apertures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 997-1008, 2012.
doi:10.1109/TAP.2011.2173130

26. Alonso, M. T., P. Lopez-Dekker, and J. J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4285-4295, 2010.
doi:10.1109/TGRS.2010.2051231

27. Xie, X. C. and Y. H. Zhang, "2D radar imaging scheme based on compressive sensing technique," Journal of Electronics & Information Technology, Vol. 32, No. 5, 1234-1238, 2010.

28. Chen, X. W., Y. H. Zhang, and X. K. Zhang, "FPGA based realization of AIC for applying CS to radar," Progress In Electromagnetics Research C, Vol. 19, 207-222, 2011.

29. Li, J., S. S. Zhang, and J. F. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307

30. Liu, Z., X. Z. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.

31. Jiang, H., H., Y. Lin, B. Zhang, and H. Wen, "Random noise imaging radar based on compressed sensing," Journal of Electronics & Information Technology, Vol. 33, No. 2, 418-423, 2011.
doi:10.3724/SP.J.1146.2010.00380

32. Shastry, M. C., R. M. Narayanan, and M. Rangaswamy, "Compressive radar imaging using white stochastic waveforms," 2010 5th International Waveform Diversity and Design Conference, 000090-000094, 2010.
doi:10.1109/WDD.2010.5592367

33. He, Y. P., K. R. Wang, J. D. Zhang, and X. H. Zhu, "Compressive sensing based pseudo-random multi-phase CW radar," Journal of Electronics & Information Technology, Vol. 33, No. 3, 418-423, 2011.
doi:10.3724/SP.J.1146.2010.00380

34. Zhu, F., Q. Zhang, W. Hong, and F. F. Gu, "Sparse imaging method with strip-map random noise radar based on compressive sensing," Systems Engineering & Electronics, Vol. 34, No. 1, 56-63, 2012.

35. Bao, Z., M. D. Xing, and T. Wang, Radar Imaging Technology, Publishing House of Electronics Industry, Beijing, 2005.

36. Zhai, W. S. and Y. H. Zhang, "Application of super-SVA to stepped-chirp radar imaging with frequency band gaps between subchirps," Progress In Electromagnetics Research B, Vol. 30, 71-82, 2011.

37. Cumming, I. and F. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Boston, MA, 2005.

38. Zhang, X. K. and Y. H. Zhang, "High resolution moving train imaging experiments with stepped-frequency radar system," 2010 8th European Conference on Synthetic Aperture Radar, 1-4, 2010.