1. Levanon, N., "Stepped-frequency pulse-train radar signal," IEE Proc-Radar Sonar Navigation, Vol. 149, No. 6, 297-309, 2002.
doi:10.1049/ip-rsn:20020432 Google Scholar
2. Levanon, N. and E. Mozeson, "Nullifying ACF grating lobes in stepped-frequency train of LFM pulses," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 2, 694-703, 2003.
doi:10.1109/TAES.2003.1207275 Google Scholar
3. Zhang, Q. and Y.-Q. Jin, "Aspects of radar imaging using frequency-stepped chirp signals," Eurasip Journal on Applied Signal Processing, Vol. 2006, No. 13, 1-8, 2006. Google Scholar
4. Zhang, Y. H., H. B. Li, and J. Wu, "Subaperture processing method for stepped frequency chirp signal," Aerospace Electronics Information Engineering and Control, Vol. 28, No. 1, 1-6, 2006. Google Scholar
5. Liu, G. S., H. Gu, X. H. Zhu, and W. M. Su, "The present and the uture of random signal radars," IEEE Aerospace and Electronic Systems Magazine, Vol. 12, No. 10, 35-40, 1997.
doi:10.1109/62.624326 Google Scholar
6. Lukin, K. A. and R. M. Narayanan, "Fifty years of noise radar," Seventh International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 1-3, 2010.
doi:10.1109/MSMW.2010.5546159 Google Scholar
7. Narayanan, R. M., Y. Xu, P. D. Hoffmeyer, and J. O. Curtis, "Design, performance, and applications of a coherent ultra-wideband random noise radar," Optical Engineering, Vol. 37, No. 6, 1855-1869, 1998.
doi:10.1117/1.601699 Google Scholar
8. Narayanan, R. M., "Through-wall radar imaging using uwb noise waveforms," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 345, No. 6, 659-678, 2008.
doi:10.1016/j.jfranklin.2008.03.004 Google Scholar
9. Ashtari, A., G. Thomas, H. Garces, B. C. Flores, et al. "Radar signal design using chaotic signals," 2007 International Waveform Diversity & Design Conference, 353-357, 2007.
doi:10.1109/WDDC.2007.4339442 Google Scholar
10. Ding, K. and R. Yang, "Point target imaging simulation using chaotic signals," 2005 IEEE International Radar Conference Record, 847-850, 2005.
doi:10.1109/RADAR.2005.1435945 Google Scholar
11. Flores, B. C., E. A. Solis, and G. Thomas, "Assessment of chaos-based FM signals for range-doppler imaging," IEE Proceedings - Radar Sonar and Navigation, Vol. 150, No. 4, 313-322, 2003.
doi:10.1049/ip-rsn:20030728 Google Scholar
12. Wang, H. and J. D. Hu, "The improved logistic-map chaotic spread spectrum sequences," Journal of China Institute of Communications, Vol. 18, No. 8, 71-77, 1997. Google Scholar
13. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731 Google Scholar
14. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
15. Candes, E. J. and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE Transactions on Information Theory, Vol. 52, No. 12, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507 Google Scholar
16. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
17. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," 2007 IEEE Radar Conference, 128-133, 2007.
doi:10.1109/RADAR.2007.374203 Google Scholar
18. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277 Google Scholar
19. Ender, J. H. G., "On compressive sensing applied to radar," Signal Processing, Vol. 90, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009 Google Scholar
20. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805 Google Scholar
21. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011. Google Scholar
22. Zhang, L., Z. J. Qiao, and M. D. Xing, "High-resolution ISAR imaging with sparse stepped-frequency waveforms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 11, 4630-4651, 2011.
doi:10.1109/TGRS.2011.2151865 Google Scholar
23. Zhu, F., Q. Zhang, Q. Lei, and Y. Luo, "Reconstruction of moving target's HRRP using sparse frequency-stepped chirp signal," IEEE Sensors Journal, Vol. 11, No. 10, 2327-2334, 2011.
doi:10.1109/JSEN.2011.2136375 Google Scholar
24. Yu, L. J. and Y. H. Zhang, "Random step frequency CSAR imaging based on compressive sensing," Progress In Electromagnetics Research C, Vol. 32, 81-94, 2012. Google Scholar
25. Zhang, L., Z. J. Qiao, M. D. Xing, J. L. Sheng, et al. "High-resolution ISAR imaging by exploiting sparse apertures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 997-1008, 2012.
doi:10.1109/TAP.2011.2173130 Google Scholar
26. Alonso, M. T., P. Lopez-Dekker, and J. J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4285-4295, 2010.
doi:10.1109/TGRS.2010.2051231 Google Scholar
27. Xie, X. C. and Y. H. Zhang, "2D radar imaging scheme based on compressive sensing technique," Journal of Electronics & Information Technology, Vol. 32, No. 5, 1234-1238, 2010. Google Scholar
28. Chen, X. W., Y. H. Zhang, and X. K. Zhang, "FPGA based realization of AIC for applying CS to radar," Progress In Electromagnetics Research C, Vol. 19, 207-222, 2011. Google Scholar
29. Li, J., S. S. Zhang, and J. F. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307 Google Scholar
30. Liu, Z., X. Z. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012. Google Scholar
31. Jiang, H., H., Y. Lin, B. Zhang, and H. Wen, "Random noise imaging radar based on compressed sensing," Journal of Electronics & Information Technology, Vol. 33, No. 2, 418-423, 2011.
doi:10.3724/SP.J.1146.2010.00380 Google Scholar
32. Shastry, M. C., R. M. Narayanan, and M. Rangaswamy, "Compressive radar imaging using white stochastic waveforms," 2010 5th International Waveform Diversity and Design Conference, 000090-000094, 2010.
doi:10.1109/WDD.2010.5592367 Google Scholar
33. He, Y. P., K. R. Wang, J. D. Zhang, and X. H. Zhu, "Compressive sensing based pseudo-random multi-phase CW radar," Journal of Electronics & Information Technology, Vol. 33, No. 3, 418-423, 2011.
doi:10.3724/SP.J.1146.2010.00380 Google Scholar
34. Zhu, F., Q. Zhang, W. Hong, and F. F. Gu, "Sparse imaging method with strip-map random noise radar based on compressive sensing," Systems Engineering & Electronics, Vol. 34, No. 1, 56-63, 2012. Google Scholar
35. Bao, Z., M. D. Xing, and T. Wang, Radar Imaging Technology, Publishing House of Electronics Industry, Beijing, 2005.
36. Zhai, W. S. and Y. H. Zhang, "Application of super-SVA to stepped-chirp radar imaging with frequency band gaps between subchirps," Progress In Electromagnetics Research B, Vol. 30, 71-82, 2011. Google Scholar
37. Cumming, I. and F. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Boston, MA, 2005.
38. Zhang, X. K. and Y. H. Zhang, "High resolution moving train imaging experiments with stepped-frequency radar system," 2010 8th European Conference on Synthetic Aperture Radar, 1-4, 2010. Google Scholar