1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
4. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2002.
doi:10.2528/PIER01081901 Google Scholar
5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
6. Kuester, E. F., N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, "A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles," Progress In Electromagnetics Research B, Vol. 33, 175-202, 2011.
doi:10.2528/PIERB11042206 Google Scholar
7. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012. Google Scholar
8. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49 Google Scholar
9. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
10. Pendry, J. B. and S. A. Ramakrishna, "Refining the perfect lens," Physica B: Condensed Matter, Vol. 338, 329-332, 2003.
doi:10.1016/j.physb.2003.08.014 Google Scholar
11. Ramakrishna, S. A., J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Optics, Vol. 50, 1419-1430, 2003. Google Scholar
12. Belov, P. A., Y. Hao, and S. Sudhakaran, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110 Google Scholar
13. Wood, B., J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, Sep. 2006.
doi:10.1103/PhysRevB.74.115116 Google Scholar
14. Webb, K. J. and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett., Vol. 31, 2130-2132, 2006.
doi:10.1364/OL.31.002130 Google Scholar
15. Feng, S. M. and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express, Vol. 14, 216-221, 2006.
doi:10.1364/OPEX.14.000216 Google Scholar
16. Shin, H. C. and S. H. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodi-electric photonic crystals," Appl. Phys. Lett., Vol. 89, 151102, 2006.
doi:10.1063/1.2360187 Google Scholar
17. Shi, L. H. and L. Gao, "Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites," Phys. Rev. B, Vol. 77, 195121, 2008.
doi:10.1103/PhysRevB.77.195121 Google Scholar
18. Moore, C. P., M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," J. Opt. Soc. Am. A, Vol. 25, 911-918, 2008.
doi:10.1364/JOSAA.25.000911 Google Scholar
19. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801 Google Scholar
20. Kotyńki, R. and T. Stefaniuk, "Multiscale analysis of subwave-length imaging with metal-dielectric multilayers," Opt. Lett., Vol. 35, 1133-1135, 2010.
doi:10.1364/OL.35.001133 Google Scholar
21. Jin, Y., "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves ," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.
doi:10.2528/PIER10051309 Google Scholar
22. Yan, C., D. Zhang, Y. Zhang, D. Li, and M. A. Fiddy, "Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths," Opt. Express, Vol. 18, 14794-14801, 2010.
doi:10.1364/OE.18.014794 Google Scholar
23. Cao, P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-re°ection and phase control coatings via surface plasmons modes of asymmetric structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010 Google Scholar
24. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759 Google Scholar
25. Korobkin, D., Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, 2005.
doi:10.1364/JOSAB.23.000468 Google Scholar
26. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006.
doi:10.1126/science.1131025 Google Scholar
27. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368 Google Scholar
28. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nature Materials, Vol. 7, 435, 2008.
doi:10.1038/nmat2141 Google Scholar
29. Chaturvedi, P., W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, "A smooth optical superlens," Appl. Phys. Lett., Vol. 96, 043102, 2010.
doi:10.1063/1.3293448 Google Scholar
30. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402 Google Scholar
31. Smith, D. R., D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett., Vol. 82, 1506, 2003.
doi:10.1063/1.1554779 Google Scholar
32. Stockman, M. I., "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Phys. Rev. Lett., Vol. 98, 177404, 2007.
doi:10.1103/PhysRevLett.98.177404 Google Scholar
33. Mesa, F., M. J. Freire, R. Marqués, and J. D. Baena, "Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory," Phys. Rev. B, Vol. 72, 235117, 2005.
doi:10.1103/PhysRevB.72.235117 Google Scholar