1. Boyd, E., H. Elbakoury, M. Hajduczenia, and A. Liu, "EPON over Coax (EPoC)," IEEE Commun. Mag., Vol. 50, No. 9, 88-95, 2012.
doi:10.1109/MCOM.2012.6295717 Google Scholar
2. IEEE 802.3 Working Group, 2012, http://www.ieee802.org/3/ep-oc.
3. Lelong, A., L. Sommervogel, N. Ravot, and M. Carrion, "Distributed reflectometry method for wire fault location using selective average," IEEE Sens. J., Vol. 2, 300-310, 2010.
doi:10.1109/JSEN.2009.2033946 Google Scholar
4. Cataldo, A., G. Cannazza, E. De Benedetto, and N. Giaquinto, "Experimental validation of a TDR-based system for measuring leak distances in buried metal pipes," Progress In Electromagnetics Research, Vol. 132, 71-90, 2012. Google Scholar
5. Kwak, K. S., T. Choe, J. Park, and T. Yoon, "Application of time-frequency domain reflectometry for measuring load impedance," IEICE Electronics Express, Vol. 5, 107-113, 2008.
doi:10.1587/elex.5.107 Google Scholar
6. Schuet, S., D. Timucin, and K. Wheeler, "A model-based probabilistic inversion framework for characterizing wire fault detection using TDR," IEEE Trans. Instrum. Meas., Vol. 60, 1654-1663, 2011.
doi:10.1109/TIM.2011.2105030 Google Scholar
7. Pourahmadi-Nakhli, M. and A. A. Safavi, "Path characteristic frequency-based fault locating in radial distribution systems using wavelets and neural networks ," IEEE Trans. Power Del., Vol. 26, 772-781, 2011.
doi:10.1109/TPWRD.2010.2050218 Google Scholar
8. Vakula, D. and N. V. S. N. Sarma, "Using neural networks for fault detection in planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 14, 21-30, 2010.
doi:10.2528/PIERL10030401 Google Scholar
9. Meng, J., Y. Gao, and Y. Shi, "Support vector regression model for measuring the permittivity of asphalt concrete," IEEE Microw. Wirel. Co., Vol. 17, No. 12, 2007.
doi:10.1109/LMWC.2007.910462 Google Scholar
10. Zhang, Y. and L. Wu, "An Mr brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012. Google Scholar
11. Thukaram, D., H. P. Khincha, and H. P. Vijaynarasimha, "Artificial neural network and support vector machine approach for locating faults in radial distribution systems ," IEEE Trans. Power Del., Vol. 20, No. 2, 710-721, 2005.
doi:10.1109/TPWRD.2005.844307 Google Scholar
12. Angiulli, G., D. De Carlo, G. Amendola, E. Arnieri, and S. Costanzo, "Support vector regression machines to evaluate resonant frequency of elliptic substrate integrate waveguide resonators," Progress In Electromagnetics Research, Vol. 83, 107-118, 2008.
doi:10.2528/PIER08041803 Google Scholar
13. Ni, J., L. Ren, C. Zhang, and S. Yang, "Abrupt event monitoring for water environment system based on KPCA and SVM," IEEE Trans. Instrum. Meas., Vol. 61, 980-989, 2012.
doi:10.1109/TIM.2011.2173000 Google Scholar
14. Wu, Y., Z. X. Tang, B. Zhang, and Y. Xu, "Permeability measurement of ferromagnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
doi:10.2528/PIER07012801 Google Scholar
15. Chen, W. Y. and K. Kerpez, "Coaxial cable distribution plant performance simulation for interactive multimedia TV," Global Telecommunications Conference, 173-177, 1995. Google Scholar
16. Zimmermann, M. and K. Dostert, "A multipath model for the powerline channel," IEEE Trans. Commun., Vol. 50, 553-559, 2002.
doi:10.1109/26.996069 Google Scholar
17. Cristianini, N. and J. S. Taylor, An Introduction to Support Vector Machines, Cambridge University Press, London, 2000.
18. Tan, C. P., J. Y. Koay, K. S. Lim, H. T. Ewe, and H.-T. Chuah, "Classification of multi-temporal SAR images for rice crops using combined entropy decomposition and support vector machine technique," Progress In Electromagnetics Research, Vol. 71, 19-39, 2007.
doi:10.2528/PIER07012903 Google Scholar
19. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM based-estimators for inverse scattering problems ," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801 Google Scholar
20. Bottou, L., O. Chapelle, D. DeCoste, and J. Weston, Large Scale Kernel Machines, MIT Press, Cambridge, MA, 2007.
21. Cawley, G. C., "Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs," International Joint Conference on Neural Networks, IJCNN, 1661-1668, 2006. Google Scholar
22. Kowalski, M., "A simple and efficient computational approach to chafed cable time-domain reflectometry signature prediction," Proc. Annu. Rev. Progress ACES Conf., 2009.