1. Westbrook, C., Handbook of MRI Technique, John Wiley & Sons, 2008.
2. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012. Google Scholar
3. Prasad, P. V., Magnetic Resonance Imaging: Methods and Biologic Applications (Methods in Molecular Medicine), Humana Press, 2005.
4. Asimakis, N. P., I. S. Karanasiou, P. K. Gkonis, and N. K. Uzunoglu, "Theoretical analysis of a passive acoustic brain monitoring system," Progress In Electromagnetics Research B, Vol. 23, 165-180, 2010.
doi:10.2528/PIERB10053112 Google Scholar
5. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504 Google Scholar
6. Maji, P., M. K. Kundu, and B. Chanda, "Second order fuzzy measure and weighted co-occurrence matrix for segmentation of brain MR images," Fundamenta Informaticae, Vol. 88, No. 1-2, 161-176, 2008. Google Scholar
7. Golestanirad, L., A. P. Izquierdo, S. J. Graham, J. R. Mosig, and C. Pollo, "Effect of realistic modeling of deep brain stimulation on the prediction of volume of activated tissue," Progress In Electromagnetics Research, Vol. 126, 1-16, 2012.
doi:10.2528/PIER12013108 Google Scholar
8. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402 Google Scholar
9. Rombouts, S. A., F. Barkhof, and P. Scheltens, Clinical Applications of Functional Brain MRI, Oxford University Press, 2007.
10. Oikonomou, A., I. S. Karanasiou, and N. K. Uzunoglu, "Phased array near field radiometry for brain intracranial applications," Progress In Electromagnetics Research, Vol. 109, 345-360, 2010.
doi:10.2528/PIER10073004 Google Scholar
11. Maji, P., B. Chanda, M. K. Kundu, and S. Dasgupta, "Deformation correction in brian MRI using mutual information and genetic algorithm," Proc. Int. Conf. Computing: Theory and Applications, 372-376, 2007. Google Scholar
12. Zhang, Y., L. Wu, and S. Wang, "Magnetic resonance brain image Magnetic resonance brain image classi¯cation by an improved artificial bee colony algorithm," Progress In Electromagnetics Research, Vol. 116, 65-79, 2011. Google Scholar
13. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002 Google Scholar
14. Maitra, M. and A. Chatterjee, "A Slantlet transform based intelligent system for magnetic resonance brain image classification," Biomedical Signal Processing and Control, Vol. 1, No. 4, 299-306, 2006.
doi:10.1016/j.bspc.2006.12.001 Google Scholar
15. El-Dahshan, E.-S. A., T. Hosny, and A.-B. M. Salem, "Hybrid intelligent techniques for MRI brain images classification," Digital Signal Processing, Vol. 20, No. 2, 433-441, 2010.
doi:10.1016/j.dsp.2009.07.002 Google Scholar
16. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105 Google Scholar
17. Zhang, Y., Z. Dong, L. Wu, and S. Wang, "A hybrid method for MRI brain image classification," Expert Systems with Applications, Vol. 38, No. 8, 10049-10053, 2011.
doi:10.1016/j.eswa.2011.02.012 Google Scholar
18. Zhang, Y. and L.Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012. Google Scholar
19. Xu, J., L. Yang, and D. Wu, "Ripplet: A new transform for image processing," Journal of Visual Communication and Image Representation, Vol. 21, No. 7, 627-639, 2010.
doi:10.1016/j.jvcir.2010.04.002 Google Scholar
20. Candes, E. J. and D. L. Donoho, "Continuous curvelet transform: I. Resolution of the wavefront set," Applied and Computational Harmonic Analysis, Vol. 19, No. 2, 162-197, 2005.
doi:10.1016/j.acha.2005.02.003 Google Scholar
21. Das, S., M. Chowdhury, and M. K. Kundu, "Medical image fusion based on ripplet transform type-I," Progress In Electromagnetics Research B , Vol. 30, 355-370, 2011. Google Scholar
22. Jolliffe, I. T., Principal Component Analysis, Springer, 2002.
23. Suykens, J. A. K. and J. Vandewalle, "Least squares support vector machine classifiers," Neural Processing Letters, Vol. 9, No. 3, 293-300, 1999.
doi:10.1023/A:1018628609742 Google Scholar