1. Carrara, , W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, , 1995.
2. Cantalloube, , H. and P. Dubois-Fernandez, "Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results," IEE Proc. Radar Sonar Navig., Vol. 152, 163-176, 2006.
doi:10.1049/ip-rsn:20045097 Google Scholar
3. Mittermayer, J., B. Schettler, and M. Younis, "TerraSAR-X commissioning phase execution summary," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, 649-659, 2010.
doi:10.1109/TGRS.2009.2026744 Google Scholar
4. Schimpf, , H., A. Wahlen, and H. Essen, "High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps," Electron. Lett., Vol. 39, No. 18, 1346-1348, 2003.
doi:10.1049/el:20030829 Google Scholar
5. Xu, J., Y. Pi, and Z. Cao, "Bayesian compressive sensing in synthetic aperture radar imaging," IET Radar Sonar Navig.,, Vol. 6, No. 1, 2-8, 2012.
doi:10.1049/iet-rsn.2010.0375 Google Scholar
6. Nie, , X., D. Zhu, X. Mao, and Z. Zhu, "The application of the principle of chirp scaling in processing stepped chirps in spotlight SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 4, 860-864, 2009.
doi:10.1109/LGRS.2009.2027212 Google Scholar
7. Zhu, , D., S. Ye, and Z. Zhu, "Polar format algorithm using chirp scaling for spotlight sar image formation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 4, 1433-1448, 2008.
doi:10.1109/TAES.2008.4667720 Google Scholar
8. Nie, , X., D. Zhu, X. Mao, and Z. Zhu, "The application of the principle of chirp scaling in processing stepped chirps in spotlight SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 4, 860- 864, 2009.
doi:10.1109/LGRS.2009.2027212 Google Scholar
9. Shin, , H.-S. and J.-T. Lim, "Range migration algorithm for airborne squint mode spotlight SAR imaging," IET Radar Sonar Navig., Vol. 1, No. 1, 77-82, 2007.
doi:10.1049/iet-rsn:20060080 Google Scholar
10. Shin, , H.-S. and J. T. Lim, "Omega-K algorithm for spaceborne spotlight SAR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 3, 343-347, 2012.
doi:10.1109/LGRS.2011.2168380 Google Scholar
11. Park, , S.-H., J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using effcient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012. Google Scholar
12. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling SAR data processing in stripmap, scanSAR and spotlight imaging modes," EUSAR2000, 749-752, Mar. 2000. Google Scholar
13. Lanari, , R., P. Franceschetti, M. Tesauro, and E. Sansosti, "Spotlight SAR image generation based on strip mode focusing techniques," Proc. IGARSS, 1761-1763, 1999. Google Scholar
14. Lanari, R., M. Tesauro, E. Sansosti, and G. Fornaro, "Spotlight SAR data focusing based on a two-step processing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 9, 1993-2004, 2001.
doi:10.1109/36.951090 Google Scholar
15. An, , D., X. Huang, T. Jin, and Z. Zhou, "Extended two-step focusing approach for squinted spotlight SAR imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2889-2990, 2012.
doi:10.1109/TGRS.2011.2174460 Google Scholar
16. Mittermayer, J. and A. Moreira, "Spotlight SAR data processing using the frequency scaling algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2198-2213, Sep. 1999.
doi:10.1109/36.789617 Google Scholar
17. Zhu, , D., M. Shen, and Z. Zhu, "Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 6, 1579-88, 2008.
doi:10.1109/TGRS.2008.916468 Google Scholar
18. Jin, , L. and X. Liu, "Nonlinear frequency scaling algorithm for high squint spotlight SAR data processing," EURASIP Journal on Advances in Signal Processing, Vol. 2008, 1-8, 2008.
doi:10.1155/2008/657081 Google Scholar
19. Davidson, , G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, 121-133, 1996.
doi:10.1109/7.481254 Google Scholar
20. Hu, , C., T. Long, and Y. Tian, "An improved nonlinear chirp scaling algorithm based on curved trajectory in geosynchronous SAR," Progress In Electromagnetics Research , Vol. 135, 481-513, 2013. Google Scholar
21. Sun, G. C., X. W. Jiang, M. D. Xing, Z. J. Qiao, Y. R. Wu, and Z. Bao, "Focus improvement of highly squinted data based on azimuth nonlinear scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2308-2322, 2011.
doi:10.1109/TGRS.2010.2102040 Google Scholar
22. An, , D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110 Google Scholar
23. Wong, , F. H. and T. S. Yeo, "New applications of nonlinear chirp scaling in SAR data processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 5, 946-953, 2001.
doi:10.1109/36.921412 Google Scholar
24. Cao, , Z. and L. Chen, "Security in application layer of radar sensor networks: Detect friends or foe," Security and Communication Networks, No. 1, 35-40, 2012. Google Scholar
25. Liao, , K.-F., X.-L. Zhang, and J. Shi, "Fast 3-D microwave imaging method based on subaperture approximation," Progress In Electromagnetics Research, Vol. 126, 333-353, 2012.
doi:10.2528/PIER12011106 Google Scholar